DOI QR코드

DOI QR Code

무리 지수를 갖는 수에 대한 예비교사들의 인식과 오류

A study on the pre-service teacher's recognition and fallacy for a number with irrational exponent

  • 투고 : 2011.03.05
  • 심사 : 2011.05.06
  • 발행 : 2011.05.25

초록

지수법칙에서 지수의 확장은 정수의 계산규칙과 마찬가지로 대수적 형식 불역의 원리에 의한 확장적 구성을 학생들에게 경험하게 할 수 있는 좋은 소재가 될 수 있다. 현행 교과서에서는 지수가 자연수에서 정수, 유리수, 실수 범위까지 확장할 수 있다고 기술하면서 학생들에게 지수가 실수로 확장해도 지수법칙이 성립함을 직관적으로 받아들이도록 하고 있다. 그러나, 지수법칙의 확장에서 유리수 지수나 무리수 지수의 값에 대한 자세한 설명이 없이 지나감으로 인하여 학생들은 이러한 값이 유리수인지 무리수인지 많은 의문을 가지고 있다. 이와 관련된 학생들의 질문에 대하여 대부분의 교사들은 자세한 답변 대신 현행 교과과정 밖의 내용이므로 대학가서 배운다라는 답변으로 그 질문에 대한 답올 대신하곤 한다. 따라서, 본 논문은 지수법칙의 확장에 대한 학생들의 궁금증의 원인을 찾기 위하여 지수법칙의 확장 단원에 대한 현행 고등학교 수학 I 교과서를 분석하여 지수법칙의 확장에 대한 학생들의 궁금증의 원인을 찾고, 지수법칙의 실수로의 확장에서 학생들이 자주 갖는 의문인 무리 지수를 갖는 수에 대한 예비교사들의 인식과 오류에 대하여 조사하여 예비교사 교육에 대한 시사점을 주고자 한다.

The expansion of exponential law as the law of calculation of integer numbers can be a good material for the students to experience an extended configuration which is based on an algebraic principle of the performance of equivalent forms. While current textbooks described that exponential law can be expanded from natural number to integer, rational number and real number, most teachers force students to accept intuitively that the exponential law is valid although exponent is expanded into real number. However most teachers overlook explaining the value of exponent of rational number or exponent of irrational number so most students have a lot of questions whether this value is a rational number or a irrational number. Related to students' questions, most teacher said that it is out of the current curriculum and students will learn it after going to college instead of detailed answers. In this paper, we will present several examples and the values about irrational exponents of a positive rational and irrational exponents of a positive irrational number, and study the recognition and fallacy of would-be teachers about the cases of irrational exponents of a positive rational and irrational exponents of a positive irrational number at the expansion of exponential law.

키워드

참고문헌

  1. 교육인적자원부 (2006). 학교 교육력 제고를 위한 교원양성체제 개선방안.
  2. 교육인적자원부 (2007). 2007년 개정교육과정(2007.2.28. 고시).
  3. 김노연 (2008). 지수에 대한 한국과 미국의 수학 교과서 비교 연구. 건국대학교 교육대학원 교육학석사학위논문.
  4. 김동화․홍우철 (2010). 고등학교 수학에서 $0^0$의 지도 방안. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 24(2), 283-300.
  5. 김수환 외 12인 (2010). 고등학교 수학 I 교사용 지도서. 서울: (주) 교학사.
  6. 김정탁 (2009). '수학적 사고'의 장으로서의 지수-로그. 아주대학교 교육대학원 교육학석사학위논문.
  7. 류희찬 외 12인 (2010). 고등학교 수학 I 교사용 지도서. 서울: 미래엔컬쳐그룹(구 대한교과서).
  8. 박경희․서혜애 (2007). 영재교육 교사 전문성의 구서요소 탐색 연구. 영재교육연구. 17(1), 77-98.
  9. 박지현 (2007). 중학교 영재학생과 예비교사의 영(0)에 관한 인식과 오류. 한국수학교육학회지 시리즈 A <수학교육>, 46(4), 357-369.
  10. 성태숙 (2010). 중등학교 교육과정에서의 지수법칙 지도방안. 부산대학교 교육대학원 교육학석사학위논문.
  11. 신현용 (2003). 교사 양성 대학 수학교육과 교육 과정 및 교수-학습 방법 개발에 관한 연구. 한국수학교육학회지 시리즈 A <수학교육>, 42(4), 431-452.
  12. 양승갑 외 7인 (2010). 고등학교 수학 I 교사용 지도서. 서울: 금성출판사.
  13. 우정호 (2000). 수학학습-지도 원리와 방법. 서울: 서울대학교 출판부.
  14. 우정호 외 5인 (2005). 고등학교 수학 I 교사용 지도서, 서울: (주)중앙교육진흥연구소.
  15. 전우권 (2007). 한국과 일본의 수학교과서 비교 연구 : 지수와 관련된 개념을 중심으로. 성균관대학교 교육대학원 교육학석사학위논문.
  16. 정상권 외 8인 (2010). 고등학교 수학 I 교사용 지도서. 서울: 금성출판사.
  17. 한국교육과정평가원 (2008). 수학 교사의 자격 기준.
  18. 황선욱 외 12인 (2010). 고등학교 수학 I 교사용 지도서. 서울: 신사고.
  19. Courant, R., & Robbins, H. (1996). What is Mathematics?: An Elementary Approach to Ideas and Methods(2nd Ed). New York: Oxford University Press.
  20. Derbyshire, J. (2004). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin.
  21. Ehrenberg, R. G., & Brewer, D. J. (1995). Did teacher's verval ability and race matter in the 1960s? Coleman revisited. Economics of Education Review. 14(1), 1-21. https://doi.org/10.1016/0272-7757(94)00031-Z
  22. Ferguson, R. F., & Ladd, H. F. (1996). How and why money matters. An Analysis of Alabama schools. In H. F. Ladd(ed.). Holding schools accountable: Performance based reform in education(pp. 265-298). Washington, DC: Brookings Institute.
  23. Gelfond, A. O. (1934a). Sur le septieme Probleme de D. Hilbert. Comptes Rendus Acad. Sci. URSS Moscou. 2, 1-6.
  24. Gelfond, A. O. (1934b). Sur le septieme Probleme de Hilbert. Bull. Acad. Sci. URSS Leningrade 7, 623-634
  25. Greenwald, R., Hedges, I. V., & Laine, R. D. (1996). The effect of school resources on student achievement. Review of Educational Research. 66(3), 361-396. https://doi.org/10.3102/00346543066003361
  26. Hilbert, D. (1902). Mathematical Problems. Bull. Amer. Math. Soc. 8. 437-479. Hilbert, D. Reprinted in 2000. Bull. Amer. Math. Soc. 37, 407-436.
  27. INTASC (1992). Model Standards for Beginning Teacher Licensing, Assessment and Development: A Resource for State Dialogue. Washington, DC: Council of Chief State School Officers.
  28. INTASC (2001). Model standards for licensing general and special education teachers of students with disabilities: A resource for state dialogue. Washington, DC: Council of Chief State School Officers.
  29. NCATE (2006). Professional standards for the Accreditation of schools, colleges, and departments of education. Washington, DC: Author.
  30. NCTM (2000). Principles and standards for school mathematics. Reston, V A: NCTM.
  31. Schneider, T. (1934a.). Transzendenzuntersuchungen periodischer Funktionen. I. J. reineangew. Math. 172, 65-69.
  32. Schneider, T. (1934b). Transzendenzuntersuchungen periodischer Funktionen. II. J. reineangew. Math. 172, 70-74.
  33. U.S. Department of Education (2002). Meeting the highly qualified teachers challenge: The secretary's annual report on teacher quality. Washington, DC: Author.
  34. Wells, D. (1986). The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books.
  35. Wenglinsky, H. (2002). How school matter. The link between teacher classroom practices and student academic performance. Education Policy Analysis Archives. 10(12), Retrieved November 15, 2010 from Http://epaa.asu.edu/epaa/v10n12/.