Turfgrass Responses to Water Deficit: A Review

물 부족 현상으로 인한 잔디의 생리학적 반응: 리뷰

  • Received : 2010.05.25
  • Accepted : 2011.11.14
  • Published : 2011.12.31

Abstract

Drought is a major limiting factor in turfgrass management. Turfgrass responses to water deficit depend on the amount and the rate of water loss as well as the duration of the stress condition. This review paper was designed to understand responses such as photosynthesis, canopy spectral reflectance, plant cell, root, hormone and protein alteration when turfgrass got drought stress. Furthermore, mechanisms to recover from drought conditions were reviewed in detail. However, there are still many questions regarding plant adaptation to water deficit. It is not clear that the mechanism by which plants detect water deficit and transfer that signal into adaptive responses. Turfgrass research should focus on the best management practices such as how to enhance the ability of self-defense mechanism through understanding plant responses by environmental stress.

잔디가 건조 스트레스를 받은 상태에서 잔디의 생리학적 메커니즘과 건조 상태에서 식물이 회복하는 생리학적 메커니즘을 보다 깊이 이해하고자 한다. 증산작용과 Stomatal Conductance의 상호 관계로 인한 광합성량의 변화, 식물 세포 내부의 변화, 삼투압 조절능력의 변화, 호르몬의 변화, 단백질 변성 등의 생리학적 반응들을 이해하고 건조 스트레스 상태에서 회복하는데 세포내부의 적응 과정, 뿌리의 반응과 같은 생리학적인 측면에 대해 이해하고 건조 스트레스 상태에서 엽록소가 흡수하고 반사하는 Spectral Reflectance의 변화를 이해하고자 한다. 하지만 건조스트레스로 인한 식물의 생리학적 메커니즘에는 아직 많은 의문점을 가지고 있으며 향 후 외부환경 스트레스에 의한 식물의 Self-defense 메커니즘을 더욱 깊게 이해하여 보다 수준 높은 관리기법들을 연구하는데 초점을 맞추어야 할 것이다.

Keywords

References

  1. Arora, R., D.S. Pitchay, and B.C. Bearce. 1998. Water stress induced heat tolerance in geranium leaf tissures: A possible linkage through stress proteins? Physiol. Plant 103:24-34. https://doi.org/10.1034/j.1399-3054.1998.1030104.x
  2. Blackman, P.G. and W.J. Davies. 1983. The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. J. Exp. Bot. 34:1619-1626. https://doi.org/10.1093/jxb/34.12.1619
  3. Bray, E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103:1035-1040.
  4. Bray, E.A. 1997. Plant responses to water deficit. Trends in plant science 2(2):48-54. https://doi.org/10.1016/S1360-1385(97)82562-9
  5. Carter, G.A. 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany 78(7):916-924. https://doi.org/10.2307/2445170
  6. Chandler, P.M., and M. Robertson. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:113-141. https://doi.org/10.1146/annurev.pp.45.060194.000553
  7. Close, T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97:795-803. https://doi.org/10.1111/j.1399-3054.1996.tb00546.x
  8. Conley, T.R., R.E. Sharp, and J.C. Walker. 1997. Water deficit rapidly stimulates the activity of a protein kinase in the elongation zone of the maize primary root. Plant Physiol. 113:219-226.
  9. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:55-76. https://doi.org/10.1146/annurev.pp.42.060191.000415
  10. Franks, P.J. and G.D. Farquhar. 2001. The effect of exogenous abscisic acid ostomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol. 125:935-942. https://doi.org/10.1104/pp.125.2.935
  11. Huang, B., R.R. Duncan, and R.N. Carrow. 1997. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying:II. Root aspects. Crop Sci. 37:1863-1869. https://doi.org/10.2135/cropsci1997.0011183X003700060033x
  12. Huang, B. and J.D. Fry. 1998. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci. 38:1017-1022. https://doi.org/10.2135/cropsci1998.0011183X003800040022x
  13. Huang, B. and H. Gao. 1999. Physiological responses of diverse tall fescue cultivars to drought stress. Hort Sci. 34:897-901.
  14. Humble, G.D. and T.C. Hsiao. 1970. Light-dependent influx and efflux of potassium of guard cell during stomatal opening and closing. Plant Physiol. 46:483-487. https://doi.org/10.1104/pp.46.3.483
  15. Humble, G.D. and K. Raschke. 1971. Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant Physiol. 48: 447-453. https://doi.org/10.1104/pp.48.4.447
  16. Iturbe Ormaetxe, I., P.R. Escuredo, C. Arrese Igor, and M Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 116:173-181. https://doi.org/10.1104/pp.116.1.173
  17. Jiang, Y. and B. Huang. 2002. Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Sci. 42:202-207. https://doi.org/10.2135/cropsci2002.0202
  18. Joslim, J.D. and G.S. Henderson. 1984. The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride. For. Sci. 30:965-970.
  19. Kneebone, W.R., D.M. Kopec, and C.F. Mancino. 1992. Water requirements and irrigation. Turfgrass Agronomy Monograph. 32:441-467.
  20. Kramer, P.J. and J.S. Boyer. 1995. Water relations of plants and soils. Academic Press, New York. p. 450.
  21. Lee, J.H., L.E. Trenholm, J.B. Unruh and J.H Hur. 2006. Sensor-based technology for assessing drought stress in two warmseason turfgrasses. Kor. J. of turfgrass sci. 20(2):213-221.
  22. Lu, S., Z. Guo, and Z. Peng. 2003. Effects of ABA and S-3307 on drought resistance and antioxidative enzyme activity of turfgrass. Hort. Sci. Biotech. 78(5):663-666.
  23. Lucas, W.J., B. Ding, and C. Schoot. 1993. Plasmodesmata and the supracellular nature of plants. New Phytol. 125:435-476. https://doi.org/10.1111/j.1469-8137.1993.tb03897.x
  24. Mayaki, W.C., I.D. Teare, and L.R. Stone. 1976. Top and root growth of irrigated and non-irrigated soybeans. Crop Sci. 16:92-94. https://doi.org/10.2135/cropsci1976.0011183X001600010023x
  25. Noggle, G.R. and G.J. Fritz. 1976. Introductory plant physiology. p. 486-487.
  26. Pelah, D., O. Shoseyov, and A. Altman. 1995. Characterization of BspA, a major boiling-stable, water stress-responsive protein in aspen (Populus tremula L.). Tree Physiology 15:673-678. https://doi.org/10.1093/treephys/15.10.673
  27. Riccardi, F., P. Gazeau, D.V. Vienne, and M. Zivy. 1998. Protein changes in responses to progressive water deficit in maize. Plant Physiol. 117:1253-1263. https://doi.org/10.1104/pp.117.4.1253
  28. Richards, L.A. and C.H. Wadleigh. 1952. Soil water and plant growth. In "Soil physical conditions and plant growth" (B.T. Shaw). Academic Press, New York. pp. 73-251.
  29. Serraj, R. and T.R. Sinclair. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant, Cell and Environment 25:333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  30. Tarczynski, M.C., R.G. Jensen, and H.J. Bohnert. 1993. Stress protection of transgenic tobacco by production of the osmolytes mannitol. Science 259:508-510. https://doi.org/10.1126/science.259.5094.508
  31. Trejo, C.L., A.L. Clephan, and W.J. Davies. 1995. How do stomata read abscisic acid signals. Plant Physiol. 109:803-811.
  32. Wang, Z., B. Huang, and Q. Xu. 2003. Effects of Abscisic acid on drought responses of Kentucky bluegrass. Hort. Sci. 128(1):36-41.
  33. White, R.H., M.C. Engelke, S.J. Morton, and B.A. Ruemmele. 1992. Competitive turgor maintenance in tall fescue. Crop Sci. 32:251-256. https://doi.org/10.2135/cropsci1992.0011183X003200010050x
  34. White, R.H., A.H. Bruneau, and T.J. Cowett. 1993. Drought resistance of diverse tall fescue cultivars. International Turfgrass Society Research Journal 7:607-613.
  35. Wu, Y., R.E. Sharp, D.M. Duracho, and D.J. Cosgrove. 1996. Growth maintenance of the maize primary root at low water potentials involves increases in cell wall extension properties, expansin activity and wall susceptibility to expansins. Plant Physiol. 111:765-772.