DOI QR코드

DOI QR Code

수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle

  • 김현식 (동명대학교 로봇시스템공학과) ;
  • 진태석 (동서대학교 메카트로닉스공학과) ;
  • 서주노 (해군사관학교 기계조선공학과)
  • 투고 : 2011.04.18
  • 심사 : 2011.06.01
  • 발행 : 2011.06.25

초록

실제 시스템 적용에 있어서, 수중비행체(Underwater Flight Vehicle : UFV)의 자율제어(autonomous control)를 위한 3-D 장애물회피(obstacle avoidance) 시스템은 다음과 같은 문제점들을 가지고 있다. 즉, 소나(sonar)는 지역적 탐색영역 내에서 장애물의 거리(range)/방위(bearing) 정보를 제공하며, 자율수중운동체(Autonomous Underwater Vehicle : AUV) 관점에서 에너지 소비 및 음향학적 소음이 적은 시스템을 필요로 하며, 최대 피치 및 심도와 같은 UFV 운용 제약조건을 가진다. 나아가, 구조와 파라메터의 관점에 있어서 용이한 설계 절차를 요구한다. 이 문제를 해결하기 위해서 진화 전략(Evolution Strategy : ES) 및 퍼지논리 제어기(Fuzzy Logic Controller : FLC)를 이용하는 지능형 3-D 장애물회피 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해 UFV의 3-D 장애물회피가 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실제 시스템에 존재하는 문제점들을 효과적으로 해결하고 있음을 보여준다.

In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

키워드

참고문헌

  1. G. Antonelli, Underwater Robots, Springer, 2006.
  2. R. K. Lea, R. Allen and S. L. Merry, "A comparative study for control techniques for an underwater flight vehicle," International Journal of System Science, vol. 30, pp. 947-964, 1999. https://doi.org/10.1080/002077299291831
  3. D. Fu-Guang, J. Peng, B. Xin-Qian and W. Hong-Jian, "AUV local path planning based on virtual potential field", Proceedings of the IEEE International Conference on Mechatronics & Automation, pp. 1711-1716, 2005. https://doi.org/10.1109/ICMA.2005.1626816
  4. 김문환, 서주노, "무인함정의 자율항해를 위한 장애물회피 경로계획 기법", 수중로봇기술연구회 2008년 추계워크샵, pp. 38-42, 2008.
  5. 김현식, 진태석, "수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘", 한국지능시스템학회 논문지, 제19권, 5호, pp. 635-640, 2009. https://doi.org/10.5391/JKIIS.2009.19.5.635
  6. D. B. Fogel, Evolutionary Computation : Toward a New Philosophy of Machine Intelligence, IEEE Press, 1995.
  7. C. T. Leondes, Fuzzy Theory Systems, Academic Press, 1999.
  8. H. S. Kim and Y. K. Shin, "Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control," Ocean Engineering, vol. 34, pp. 1080-1088, 2007.
  9. J. Yuh, "Modeling and control of underwater robotic vehicles," IEEE Transactions on Man and Cybernetics, vol. 20, no. 6, pp. 1475-1483, 1990. https://doi.org/10.1109/21.61218
  10. M. Gertler and G. R. Hagen, "Standard equation of motion for submarine simulation," Naval Ship Research and Development Center Report 2510, 1967.

피인용 문헌

  1. Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.398
  2. Development of Buoy-based Autonomous Surface Robot-kit vol.29, pp.3, 2015, https://doi.org/10.5574/KSOE.2015.29.3.249