DOI QR코드

DOI QR Code

Two d10 Metal Coordination Polymers Based on 1H-1,2,4-Triazole: Synthesis, Structure and Fluorescence

  • Zhang, Xiu-Cheng (College of Science, Northeast Forestry University) ;
  • Xu, Ling (REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto) ;
  • Liu, Wen-Guang (College of Science, Northeast Forestry University) ;
  • Liu, Bing (REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto)
  • Received : 2011.02.02
  • Accepted : 2011.03.16
  • Published : 2011.05.20

Abstract

The reactions of 1H-1,2,4-triazole (Htr) with $MX_2$ ($ZnCl_2$ for 1; $CdBr_2$ for 2) resulted in two coordination polymers, [Zn(tr)Cl]$_n$ (1) and $[Cd(Htr)_2Br_2]_n$ (2). The structural analyses indicate that 1 and 2 feature a 2D layer and 1D triple chain, respectively. In 1, neighouring Zn atoms are connected by ${\mu}_3-1$ ${\kappa}N$: 2 ${\kappa}N$: $4{\kappa}N-tr^-$ anionic ligand into 6- and 16-membered rings, further grow into a 2D sheet. Cd atoms in 2 are bonded by two ${\mu}_2-Br^-$ bridges and neutral ${\mu}_2$-1 ${\kappa}N$: 2 ${\kappa}N$-Htr to form a 1D triple chain. The fluorescent characterizations of 1, 2 and the free Htr ligand feature simlilar emission peakes at 444, 446 and 423 nm respectively, which can be assigned to intra-ligand ${\pi}-{\pi}^*$ transition of (H)tr. The energy gaps of 5.90 eV for 1, 5.16 eV for 2, and 5.93 eV for Htr suggest that the compounds behave as insulators.

Keywords

References

  1. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89. https://doi.org/10.1126/science.284.5411.89
  2. Lehn, J. M. Science 2002, 295, 2400. https://doi.org/10.1126/science.1071063
  3. Cahill, C. L.; De Lill, D. T.; Frisch, M. Cryst. Eng. Comm. 2007, 9, 15. https://doi.org/10.1039/b615696g
  4. Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36, 770. https://doi.org/10.1039/b501600m
  5. Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127. https://doi.org/10.1016/j.ccr.2006.02.013
  6. James, S. L. Chem. Soc. Rev. 2003, 32, 276. https://doi.org/10.1039/b200393g
  7. Coronado, E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J.; Laukhin, V. Nature 2000, 408, 447. https://doi.org/10.1038/35044035
  8. Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem. Int. Ed. 2000, 39, 2082.
  9. Zhang, J.; Chen, S. M.; Valle, H.; Wong, M.; Austria, C.; Cruz, M.; Bu, X. H. J. Am. Chem. Soc. 2007, 129, 14168. https://doi.org/10.1021/ja076532y
  10. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. https://doi.org/10.1021/cr9900432
  11. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238. https://doi.org/10.1038/nature03852
  12. Sun, W. W.; Cheng, A. L.; Jia, Q. X.; Gao, E. Q. Inorg. Chem. 2007, 46, 5471. https://doi.org/10.1021/ic700610p
  13. Du, M.; Jiang, X. J.; Zhao, X. J. Inorg. Chem. 2006, 45, 3998. https://doi.org/10.1021/ic060001d
  14. Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev. 2003, 246, 247. https://doi.org/10.1016/S0010-8545(03)00126-7
  15. Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. 1999, 38, 2638. https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4
  16. Fujita, M.; Tominag, A. M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371.
  17. Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. https://doi.org/10.1021/cr9601324
  18. Melanie, A. P.; Darren, W. J. Chem. Soc. Rev. 2007, 36, 1441. https://doi.org/10.1039/b610405n
  19. Ouellette, W.; Hudson, B. S.; Zubieta, J. Inorg. Chem. 2007, 26, 4887.
  20. Mitzi, D. B. Dalton Trans. 2001, 1.
  21. Kitaura, R.; Kitagawa, S.; Kubtoa, Y.; Kobayashi, T. C.; Kindo, K.; Mita, Y.; Matsuo, A.; Kobayashi, M.; Chang, H. C.; Ozawa, T. C.; Suzuki, M.; Sakata, M.; Takata, M. Science 2002, 298, 2358. https://doi.org/10.1126/science.1078481
  22. Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762. https://doi.org/10.1126/science.1075948
  23. Maiti, D. K.; Chatterjee, N.; Pandit, P.; Hota, S. K. Chem. Commun. 2010, 46, 2022. https://doi.org/10.1039/b924761k
  24. Wang, H. Y.; Cheng, J. Y.; Ma, J. P.; Dong, Y. B.; Huang, R. Q. Inorg. Chem. 2010, 49, 2416. https://doi.org/10.1021/ic902311g
  25. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  26. Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301. https://doi.org/10.1021/ja037088b
  27. Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron, D.; Signorini, R. Org. Lett. 2002, 4, 1495. https://doi.org/10.1021/ol025703v
  28. Liu, J. C.; Fu, D. G.; Zhuang, J. Z.; Duan, C. Y.; X. Z. You, J. Chem. Soc. Dalton Trans. 1999, 2337.
  29. Browne, W. R.; O'Connor, C. M.; Hughes, H. P.; Hage, R.; Walter, O.; Doering, M.; Gallagher, J. F.; Vos, J. G. J. Chem. Soc. Dalton Trans. 2002, 4048.
  30. Tang, S.; Liu, M. R.; Lu, P.; Xia, H.; Li, M.; Xie, Z. Q.; Shen, F. Z.; Gu, C.; Wang, H. P.; Yang, B. Adv. Funct. Mater. 2007, 17, 2869. https://doi.org/10.1002/adfm.200700175
  31. Chen, H. Y.; Chi, Y.; Liu, C. S.; Yu, J. K;. Cheng, Y. M.; Chen, K. S.; Chou, P. T.; Peng, S. M.; Lee, G. H.; Carty, A. J. Adv. Funct. Mater. 2005, 15, 567. https://doi.org/10.1002/adfm.200400250
  32. Garcia, Y.; Ksenofontov, V.; Mentior, S.; Dîrtu, M. M.; Gieck, C.; Bhatthacharjee, A.; GAtlich, P. Chem. Eur. J. 2008, 14, 3745. https://doi.org/10.1002/chem.200701305
  33. Kitchen, J. A.; Brooker, S. Coord. Chem. Rev. 2008, 252, 2072. https://doi.org/10.1016/j.ccr.2007.11.010
  34. Bronisz, R. Inorg. Chem. 2005, 44, 4463. https://doi.org/10.1021/ic050449z
  35. Bhattacharjee, A.; Ksenofontov, V.; Sugiyarto, K. H.; Goodwin, H. A.; Gutlich, P. Adv. Funct. Mater. 2003, 13, 877. https://doi.org/10.1002/adfm.200304356
  36. Shao, P.; Li, Z.; Qin, J. G.; Gong, H. M.; Ding, S.; Wang, Q. Q. Aust. J. Chem. 2006, 59, 49. https://doi.org/10.1071/CH05179
  37. Li, J. R.; Yu, Q.; Sanudo, E. C.; Tao, Y.; Bu, X. H. Chem. Commun. 2007, 2602.
  38. Zhai, Q. G.; Lu, S. M.; Chen, C. Z.; Xu, X. J.; Yang, W. B. Cryst. Growth Des. 2006, 6, 1393. https://doi.org/10.1021/cg0600142
  39. Zhai, Q. G.; Wu, X. Y.; Chen, S. M.; Lu, C. Z.; Yang, W. B. Cryst. Growth Des. 2006, 6, 2126. https://doi.org/10.1021/cg060359k
  40. Ren, H.; Song, T. Y.; Xu, J. N.; Jing, S. B.; Yu, Y.; Zhang, P.; Zhang, L. R. Cryst. Growth Des. 2009, 9, 105. https://doi.org/10.1021/cg701164u
  41. Zhang, J. P.; Lin, Y. Y.; Huang, X. C.; Chen, X. M. J. Am. Chem. Soc. 2005, 127, 5495. https://doi.org/10.1021/ja042222t
  42. Rigaku, CrystalClear 1.3.6, Software User's Guide for the Rigaku. R-Axis, Mercury and Jupiter CCD Automated X-ray Imaging System. Rigaku Molecular Structure Corporation, 2002, Utah, USA.
  43. Siemens, SHELXTLTM Version 5 Reference Manual, Siemens Engergy & Automation Inc. Madison, Wisconsin, 1994, USA.
  44. Kolnaar, J. J. A.; van Dijk, G.; Kooijman, H.; Spek, A. L.; Ksenofontov, V. G.; Gutlich, P.; Haasnoot, J. G.; Reedijk, J. Inorg. Chem. 1997, 36, 2433. https://doi.org/10.1021/ic9612010
  45. Garcia, Y.; Guionneau, P.; Bravic, G.; Chasseau, D.; Howard, J. A. K.; Khan, O.; Ksenofontov, V.; Reiman, S.; Gutlich, P. Eur. J. Inorg. Chem. 2000, 1531.
  46. Liu, B.; Xu, L.; Guo, G. C.; Huang, J. S. J. Mol. Struct. 2006, 825, 79. https://doi.org/10.1016/j.molstruc.2006.04.026
  47. Zhang, X. C.; Chen, Y. H.; Liu, B. Bull. Korean Chem. Soc. 2008, 29, 511. https://doi.org/10.5012/bkcs.2008.29.2.511
  48. Drabent, K.; Ciunik, Z. Chem. Commun. 2001, 1254.
  49. Garcia, Y.; Koningsbruggen, P. J.; Bravic, G.; Chasseau, D.; Kahn, O. Eur. J. Inorg. Chem. 2003, 356.
  50. Garcia, Y.; van Koningsbruggen, P. J.; Bravic, G.; Guionneau, P.; Chasseau, D.; Cascarano, G. L.; Moscovici, J.; Lambert, K.; Michalowicz, A. Inorg. Chem. 1997, 36, 6357. https://doi.org/10.1021/ic970895p
  51. He, X.; Lu, C. Z.; Wu, C. D.; Chen, L. J. Eur. J. Inorg. Chem. 2006, 2491.
  52. Ouellette, W.; Prosvirin, A. V.; Chieffo, V.; Dunbar, K. R.; Hudson, B.; Zubieta, J. Inorg. Chem. 2006, 45, 9346. https://doi.org/10.1021/ic061102e
  53. Zhai, Q. G.; Wu, X. Y.; Chen, S. M.; Zhao, Z. G.; Lu, C. Z. Inorg. Chem. 2007, 46, 5046. https://doi.org/10.1021/ic700415w
  54. Liu, B.; Guo, G. C.; Huang, J. S. J. Solid. State. Chem. 2006, 179, 3136. https://doi.org/10.1016/j.jssc.2006.05.046
  55. Haasnoot, J. G.; De Keyzer, G. C. M.; Verschoor, G. C. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1983, 39, 1207. https://doi.org/10.1107/S0108270183007945
  56. Wang, X. L.; Qin, C.; Lan, Y. Q.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Chem. Commun. 2009, 410.
  57. Chen, X. M.; Wang, D. S.; Luo, Q. Z.; Wang, R. Z. Naturforsch., B: Chem. Sci. 2008, 63, 489.
  58. Lu, Y. C.; Li, X. R.; Zhang, Z. H.; Du, M. Chin. J. Struct. Chem. 2007, 26, 15.
  59. Zhai, Q. G.; Lu, C. Z.; Wu, X. Y.; Batten, S. R. Cryst. Growth Des. 2007, 7, 2332. https://doi.org/10.1021/cg070593q
  60. Ellsworth, J. M.; Seward, K. L.; Smith, M. D.; zur Loye, H. C. Solid State Sciences 2008, 10, 267. https://doi.org/10.1016/j.solidstatesciences.2007.10.001
  61. Liu, B.; Li, B.; Zhang, X. C. Bull. Korean Chem. Soc. 2006, 27, 1677. https://doi.org/10.5012/bkcs.2006.27.10.1677
  62. Liu, B.; Xu, L.; Guo, G. C.; Huang, J. C. Inorg. Chem. Commun. 2006, 9, 687. https://doi.org/10.1016/j.inoche.2006.04.002
  63. Liu, B.; Zhang, X. C.; Wang, Y. F. Inorg. Chem. Commun. 2007, 10, 199. https://doi.org/10.1016/j.inoche.2006.10.028
  64. Liu, B.; Zhang, X. C.; Chen, Y. H. Inorg. Chem. Commun. 2007, 10, 498. https://doi.org/10.1016/j.inoche.2007.01.010
  65. Liu, B.; Zhou, Z. Q.; Zhang, X. C.; Zhang, X. Y. Inorg. Chem. Commun. 2007, 10, 1095. https://doi.org/10.1016/j.inoche.2007.06.006
  66. Liu, B.; Zhang, X. C. Inorg. Chem. Commun. 2008, 11, 1162. https://doi.org/10.1016/j.inoche.2008.06.026
  67. Chen, Y. H.; Liu, B. Bull. Korean Chem. Soc. 2008, 29, 2517 https://doi.org/10.5012/bkcs.2008.29.12.2517
  68. Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy; Interscience Publishers: New York, 1966.
  69. Kotuem, G. Reflectance Spectroscopy; Springer-Verlag: New York, 1969.

Cited by

  1. Synthesis, Structure and Biological Properties of a Novel Copper (II) Supramolecular Compound Based on 1,2,4-Triazoles Derivatives vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2603
  2. Mechanochemical Synthesis of 3d Transition-Metal-1,2,4-Triazole Complexes as Precursors for Microwave-Assisted and Thermal Conversion to Coordination Polymers with a High Influence on the Dielectric Properties vol.22, pp.8, 2016, https://doi.org/10.1002/chem.201503725