DOI QR코드

DOI QR Code

1,3,5-Trichloro-2,4,6-Triazinetrion: A Versatile Heterocycle for the One-Pot Synthesis of 14-Aryl- or Alkyl -14H-Dibenzo[a,j]xanthene, 1,8-Dioxooctahydroxanthene and 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthene-11-one Derivatives under Solvent-Free Conditions

  • Received : 2010.12.14
  • Accepted : 2011.01.23
  • Published : 2011.05.20

Abstract

A facile, green, efficient and environment-friendly protocol for the synthesis of 14-aryl- or alkyl-14Hdibenzo[a,j]xanthene, 1,8-dioxooctahydroxanthene and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one have been developed by one-pot condensation of various aldehydes with (i) ${\beta}$-naphthol (ii) cyclic 1,3-dicarbonyl compounds and (iii) ${\beta}$-naphthol and cyclic 1,3-dicarbonyl compounds, in the presence of 1,3,5-trichloro-2,4,6-triazinetrion (trichloroisocyanuric acid, TCCA) as catalyst under solvent-free conditions. The present approach offers the advantages of clean reaction, simple methodology, short reaction time, easy purification, and economic availability of the catalyst.

Keywords

References

  1. Trost, B. M. Science 1991, 254, 1471. https://doi.org/10.1126/science.1962206
  2. Sheldon, R. A. Pure. Appl. Chem. 2000, 72, 1233. https://doi.org/10.1351/pac200072071233
  3. Juneja, S. K.; Gupta, M.; Paul, S.; Gupta, R. Bull. Korean Chem. Soc. 2008, 29, 2337. https://doi.org/10.5012/bkcs.2008.29.12.2337
  4. Yahyaee, M.; Kianmehr, E.; Foroutan-nejad, C.; Beheshti, S. Bull. Korean Chem. Soc. 2007, 27, 1246.
  5. Anastas, P.; Williamson, T. Green Chemistry: Frontiers in Benign Chemical Synthesis and Procedures; Oxford Science Publications: Oxford, 1998.
  6. Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. PCT Int. Appl. WO 9706178, 1997.
  7. Hideo, T.; Teruomi, J. JPN. Patent 56005480, 1981.
  8. Poupelin, J. P.; Saint-Ruf, G.; Foussard-blanpin, O.; Narcisse, G.; Uchida-Ernouf, C.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67.
  9. Saint-Ruf, G.; Hieu, H. T.; Poupelin, J. P. Naturwissenschaften 1975, 62, 584. https://doi.org/10.1007/BF01166986
  10. Ion, R. M.; Frackowiak, A.; Wiktorowicz, K. Acta Biochim. Pol. 1998, 45, 833.
  11. Bhowmik, B. B.; Ganguly, P. Mol. Biomol. Spect. 2005, 61, 1997. https://doi.org/10.1016/j.saa.2004.07.031
  12. Ahmad, M.; King, T. A.; Ko, D. K.; Cha, B. H.; Lee, J. J. Phys. D: Appl. Phys. 2002, 35, 1473. https://doi.org/10.1088/0022-3727/35/13/303
  13. Knight, C. G.; Stephens, T. Biochem. J. 1989, 258, 683. https://doi.org/10.1042/bj2580683
  14. Casiraghi, G.; Gasnati, G.; Corina, M. Tetrahedron Lett. 1973, 14, 679. https://doi.org/10.1016/S0040-4039(00)72432-4
  15. Bekaert, A.; Andrieux, J.; Plat, M. Tetrahedron Lett. 1992, 33, 2805. https://doi.org/10.1016/S0040-4039(00)78863-0
  16. Knight, D. W.; Little, P. B. J. Chem. Soc. Perkin. Trans. 1 2001, 14, 1771.
  17. Kuo, C. W.; Fang, J. M. Synth. Commun. 2001, 31, 877. https://doi.org/10.1081/SCC-100103323
  18. Wang, J. Q.; Harvey, R. G. Tetrahedron 2002, 58, 5927. https://doi.org/10.1016/S0040-4020(02)00534-3
  19. Sen, R. N.; Sarkar, N. N. J. Am. Chem. Soc. 1925, 47, 1079. https://doi.org/10.1021/ja01681a023
  20. Papini, P.; Cimmarusti, R. Gazz. Chim. Ital. 1947, 77, 142.
  21. Ota, K.; Kito, T. Bull. Chem. Soc. Jpn. 1976, 49, 1167. https://doi.org/10.1246/bcsj.49.1167
  22. Zarei, A.; Hajipour, A. R.; Khazdooz, L. Dyes Pigm. 2010, 85, 133. https://doi.org/10.1016/j.dyepig.2009.10.015
  23. Shaterian, H. R.; Ghashang, M..; Hassankhani, A. Dyes Pigm. 2008, 6, 564.
  24. Seyyedhamzeh, M.; Mirzaei, P. Bazgir, A. Dyes Pigm. 2008, 76, 836. https://doi.org/10.1016/j.dyepig.2007.02.001
  25. Karimi-Jaberi, Z.; Keshavarzi, M. Chin. Chem. Lett. 2010, 21, 547. https://doi.org/10.1016/j.cclet.2010.01.014
  26. Mirjalili, B. B.; Bamoniri, A.; Akbari, A. Tetrahedron Lett. 2008, 49, 6454. https://doi.org/10.1016/j.tetlet.2008.08.101
  27. Kokare, N. D.; Sangshetti, J. N.; Shinde, D. B. Chin. Chem. Lett. 2008, 19, 1186. https://doi.org/10.1016/j.cclet.2008.07.015
  28. Bhattacharya, A. K.; Rana, K. C.; Mujahid, M.; Sehar, I.; Saxena, A. K. Bioorg. Med. Chem. Lett. 2009, 19, 5590. https://doi.org/10.1016/j.bmcl.2009.08.033
  29. Dabiri, M.; Baghbanzadeh, M.; Shakouri Nicheh, M.; Arzroomchilar, E. Bioorg. Med. Chem. Lett. 2008, 18, 436. https://doi.org/10.1016/j.bmcl.2007.07.008
  30. Kantevari, S.; Chary, M. V.; Das, A. P. K.; Vuppalupati, S. V. N.; Lingaiah, N. Catal. Commun. 2008, 9, 1575. https://doi.org/10.1016/j.catcom.2008.01.003
  31. Gong, K.; Fang, D.; Wang, H. L.; Zhou, X. L.; Liu, Z. L. Dyes Pigm. 2009, 80, 30. https://doi.org/10.1016/j.dyepig.2008.02.011
  32. Bhattacharya, A. K.; Rana, K. C. Mendeleev Commun. 2007, 17, 247. https://doi.org/10.1016/j.mencom.2007.06.023
  33. Lu, H. Y.; Li, J. J.; Zhang, Z. H. Appl. Orgnometal. Chem. 2009, 23, 165. https://doi.org/10.1002/aoc.1488
  34. John, A.; Yadav, R. J. P.; Palaniappan, S. J. Mol. Catal. A: Chem. 2006, 248, 121. https://doi.org/10.1016/j.molcata.2005.12.017
  35. Zhang, Z. H.; Liu, Y. H. Catal. Commun. 2008, 9, 1715. https://doi.org/10.1016/j.catcom.2008.01.031
  36. Bigdeli, M. A.; Nemati, F.; Mahdavinia, G. H.; Doostmohammadi, H. Chin. Chem. Lett. 2009, 20, 1275. https://doi.org/10.1016/j.cclet.2009.06.024
  37. Das, B.; Thirupathi, P.; Reddy, K. R.; Ravikanth, B.; Nagarapu, L. Catal. Commun. 2007, 8, 535. https://doi.org/10.1016/j.catcom.2006.02.023
  38. Khurana, J. M.; Magoo, D. Tetrahedron Lett. 2009, 50, 4777. https://doi.org/10.1016/j.tetlet.2009.06.029
  39. Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Tetrahedron 2009, 65, 7129. https://doi.org/10.1016/j.tet.2009.06.024
  40. Li, J.; Tang, W.; Lu, L.; Su, W. Tetrahedron Lett. 2008, 49, 7117. https://doi.org/10.1016/j.tetlet.2008.09.129
  41. Li, J.; Lu, L.; Su, W. Tetrahedron Lett. 2010, 51, 2434. https://doi.org/10.1016/j.tetlet.2010.02.149
  42. Zhang, Z. H.; Wang, H. J.; Ren, X. Q.; Zhang, Y. Y. Monatsh. Chem. 2009, 10, 1481.
  43. Niknam, K.; Damya, M. J. Chin. Chem. Soc. 2009, 56, 659. https://doi.org/10.1002/jccs.200900098
  44. Mahdavinia, G. H.; Rostamizadeh, S.; Amani, A. M.; Emdadi, Z. Ultrason. Sonochem. 2009, 16, 7. https://doi.org/10.1016/j.ultsonch.2008.05.010
  45. Bigdeli, M. A.; Heravi, M. M.; Mahdavinia, G. H. Catal. Commun. 2007, 8, 1595. https://doi.org/10.1016/j.catcom.2007.01.007
  46. Zhang, Z. H.; Zhang, P.; Yang, S. H.; Wang, H. J.; Deng, J. J.Chem. Sci. 2010, 122, 427. https://doi.org/10.1007/s12039-010-0049-0
  47. Imani-Shakibaei, G.; Mirzaei, P.; Bazgir, A. Appl. Catal. A: Gen. 2007, 325, 188. https://doi.org/10.1016/j.apcata.2007.03.008
  48. Khoramabadi-Zad, A.; Kazemi, Z.; Amiri-Rudbari, H. J. Korean Chem. Soc. 2002, 46, 541. https://doi.org/10.5012/jkcs.2002.46.6.541
  49. Jin, T.; Zhang, J.; Xiao, J.; Wang, A.; Li, T. Synlett 2004, 866.
  50. Darviche, F.; Balalaie, S.; Chadegani, F. Synth. Commun. 2007, 37, 1059. https://doi.org/10.1080/00397910701196520
  51. Karimi, N.; Abdi-Oskooie, H.; Heravi, M. M.; Tahershamsi, L. Synth. Commun. 2011, 41, 307.
  52. Giacomelli, G.; Porcheddu, A.; De Luca, L. Curr. Org. Chem. 2004, 8, 1497. https://doi.org/10.2174/1385272043369845
  53. Kolvari, E.; Ghorbani-Choghamarani, A.; Salehi, P.; Shirini, F.; Zolfigol, M. A. J. Iran. Chem. Soc. 2007, 4, 126. https://doi.org/10.1007/BF03245963
  54. Ghorbani-Vaghei, R.; Azarifar, D.; Maleki, B. Bull. Korean Chem. Soc. 2004, 25, 953. https://doi.org/10.5012/bkcs.2004.25.7.953
  55. Azarifar, D.; Zolfigol, M. A.; Maleki, B. Bull. Korean Chem. Soc. 2004, 25, 23. https://doi.org/10.5012/bkcs.2004.25.1.023
  56. Maleki, B.; Azarifar, D.; Ghorbani-Vaghei, R.; Veisi, H.; Hojati, S. F.; Gholizadeh, M.; Saleabadi, H.; Khodaverdian Moghaddam, M. Monatsh. Chem. 2009, 140, 1485. https://doi.org/10.1007/s00706-009-0212-9
  57. Maleki, B.; Saleabadi, H.; Khodaverdian Moghaddam, M. Acta Chim. Slov. 2010, 57, 741.
  58. Maleki, B. Collect. Czech. Chem. Commun. 2011, 76, 27. https://doi.org/10.1135/cccc2010111
  59. Veisi, H.; Gholbedaghi, R.; Malakootikhah, J.; Sedrpoushan, A.; Maleki, B.; Kordestani, D. J. Het. Chem. 2010, 47, 1398. https://doi.org/10.1002/jhet.486
  60. Weber, L. Drug. Discov. Today 2002, 7, 143. https://doi.org/10.1016/S1359-6446(01)02090-6
  61. Hojati, S. F.; Gholizadeh, M.; Haghdoust, M.; Shafiezadeh, M. Bull. Korean Chem. Soc. 2010, 31, 3238. https://doi.org/10.5012/bkcs.2010.31.11.3238
  62. Nefzi, A.; Ostresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449. https://doi.org/10.1021/cr960010b
  63. Naimi-Jamal, M. R.; Mashkouri, S.; Sharifi, A. Mol. Divers. 2010, 14, 473. https://doi.org/10.1007/s11030-010-9246-5
  64. Zolfigol, M. A.; Azarifar, D.; Maleki, B. Tetrahedron Lett. 2004, 45, 2181. https://doi.org/10.1016/j.tetlet.2004.01.038
  65. Azarifar, D.; Maleki, B. J. Chin. Chem. Soc. 2005, 52, 1215. https://doi.org/10.1002/jccs.200500174
  66. Acharya, J.; Gupta, A. K.; Shakya, P. D.; Kaushik, M. P. Tetrahedron Lett. 2005, 46, 5293. https://doi.org/10.1016/j.tetlet.2005.06.024
  67. Khazaei, A.; Zolfigol, M. A.; Rostami, A.; Ghorbani-Choghamarani, A. Catal. Commun. 2007, 8, 543. https://doi.org/10.1016/j.catcom.2006.06.018

Cited by

  1. ChemInform Abstract: 1,3,5-Trichloro-2,4,6-triazinetrion: A Versatile Heterocycle for the One-Pot Synthesis of 14-Aryl- or Alkyl-14H-dibenzo[a,j]xanthene, 1,8-Dioxooctahydroxanthene and 12-Aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one Derivatives under vol.42, pp.42, 2011, https://doi.org/10.1002/chin.201142141
  2. A novel polymeric catalyst for the one-pot synthesis of xanthene derivatives under solvent-free conditions vol.9, pp.5, 2012, https://doi.org/10.1007/s13738-012-0092-5
  3. One-Pot Synthesis of Sulfonamides and Sulfonyl Azides from Thiols using Chloramine-T vol.96, pp.11, 2013, https://doi.org/10.1002/hlca.201200648
  4. Nanocomposite: A Highly Efficient Recyclable Catalyst for the Green Synthesis of 1,8-Dioxooctahydroxanthenes in Water pp.00094536, 2013, https://doi.org/10.1002/jccs.201300178
  5. Iranian chemist’s efforts to provide various effective methods for the synthesis of xanthenes vol.11, pp.3, 2014, https://doi.org/10.1007/s13738-013-0353-y
  6. Tandem cyclocondensation-Knoevenagel–Michael reaction of phenyl hydrazine, acetoacetate derivatives and arylaldehydes vol.38, pp.11, 2014, https://doi.org/10.1039/C4NJ01079E
  7. magnetic porous nanospheres as recyclable catalysts for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes and 1,8-dioxooctahydroxanthene derivatives under various conditions vol.38, pp.11, 2014, https://doi.org/10.1039/C4NJ00961D
  8. One-pot Synthesis of 1-Amidoalkyl-2-naphthols under Solvent-free Conditions vol.46, pp.3, 2014, https://doi.org/10.1080/00304948.2014.903143
  9. Synthesis, DNA-binding study, and antioxidant activity of 14-aryl-14H-dibenzo[a,j]xanthene derivatives vol.24, pp.1, 2015, https://doi.org/10.1007/s00044-014-1124-8
  10. A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1356-0
  11. Facile synthesis and investigation of 1,8-dioxooctahydroxanthene derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution vol.40, pp.2, 2016, https://doi.org/10.1039/C5NJ02707A
  12. Catalytic application of N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide as a new catalyst for the synthesis of 9-aryl-1,8-dioxo-octahydroxanthenes under neutral media vol.42, pp.8, 2016, https://doi.org/10.1007/s11164-016-2492-0
  13. -ethylnaphtyl-2,7-sulfonamide) vol.64, pp.9, 2017, https://doi.org/10.1002/jccs.201700082
  14. -supported dual acidic heterogeneous catalyst for highly efficient one-pot synthesis of benzoxanthenones and 3-pyranylindoles pp.02682605, 2018, https://doi.org/10.1002/aoc.4072
  15. -halo Reagents in Neutral Media vol.62, pp.10, 2015, https://doi.org/10.1002/jccs.201500125
  16. Preparation of Fully Substituted 1,3,4-Oxadiazole Derivatives from N-Isocyaniminotriphenylphosphorane, (E)-Cinnamic Acids, Chloroacetone and Primary Amines vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2700
  17. Efficient preparation of some new 1-carbamato-alkyl-2-naphthols using N-halo reagents in neutral media vol.4, pp.3, 2011, https://doi.org/10.1039/c3ra45036h
  18. Nano α-Al2O3supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its applicati vol.4, pp.81, 2011, https://doi.org/10.1039/c4ra07813f
  19. One-pot access to new tetrahydrobenzo[a]xanthen-11-ones and naphthopyranopyrimidines using 2,3-dihydroxynaphthalene vol.46, pp.20, 2011, https://doi.org/10.1080/00397911.2016.1223308
  20. Tungstophosphoric acid nanoparticles supported on polyamic acid: A mild and recoverable heterogeneous catalyst for the selective synthesis of mono and bulky bis(1,8-dioxooctahydroxanthene)s under solv vol.191, pp.5, 2011, https://doi.org/10.1080/10426507.2015.1100185
  21. Sulfonated starch nanoparticles: An effective, heterogeneous and bio-based catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes vol.1142, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2017.02.095
  22. Phosphomolybdic acid supported on Schiff base functionalized graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the multi‐component synthesis of tetrahy vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4881
  23. Solvent-Free Preparation of 1,8-Dioxo-Octahydroxanthenes Employing Iron Oxide Nanomaterials vol.12, pp.15, 2011, https://doi.org/10.3390/ma12152386
  24. Heterogeneous SO 3 H @ FE 3 O 4 magnetic nanocatalyst as an efficient and reusable medium for the synthesis of 3,3′‐(arylmethylene)‐bis‐(4 vol.67, pp.11, 2011, https://doi.org/10.1002/jccs.202000087
  25. Green synthesis of benzochromenopyrimidines in the presence of MWCNTs@SiO2/MSA as a new and effective solid acid catalyst under microwave irradiation vol.1235, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2021.130183