• Title/Summary/Keyword: Microbial activity

Search Result 1,809, Processing Time 0.046 seconds

A combined approach to evaluate activity and structure of soil microbial community in long-term heavy metals contaminated soils

  • Wang, Tianqi;Yuan, Zhimin;Yao, Jun
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2018
  • In the present study, long-term heavy metals (HMs) contaminated soil samples from a well-known Pb/Zn smelting area in the southwest of China were collected, and physicochemical and biological characteristics of these samples were evaluated. Soil samples contained different concentrations of HMs, namely Pb, Zn, Cu, and Cd. Enzyme activity analyses combined with microcalorimetric analysis were used for soil microbial activity evaluation. Results showed that two soil samples, containing almost the highest concentrations of HMs, also shared the greatest microbial activities. Based on correlation coefficient analysis, high microbial activity in heavily HMs contaminated soil might be due to the high contents of soil organic matter and available phosphorus in these samples. High-throughput sequencing technique was used for microbial community structure analysis. High abundance of genera Sphingomonas and Thiobacillus were also observed in these two heavily contaminated soils, suggesting that bacteria belonging to these two genera might be further isolated from these contaminated soils and applied for future studies of HMs remediation. Results of present study would contribute to the evaluation of microbial communities and isolation of microbial resources to remediate HMs pollution.

Anti-microbial Activity of Soybean Extract Against Oral Microbes (콩 추출물의 구강미생물에 대한 항균효과)

  • Lee Sung-Lim;Kim Jong-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.192-197
    • /
    • 2006
  • This study was performed to investigate anti-microbial activity of soybean extract against oral microbes, and to determine the minimum inhibition concentration (MIC) for microbes causing oral diseases. The soybean extract was prepared using ethyl acetate and it was treated with 16 types of oral microbes at a concentration of 5.00 mg/ml (0.5%). The MIC of soybean extract for three major microbes causing oral diseases was determined. The anti-microbial activity and MIC were measured using broth dilution method. Significant reduction of microbial activities of 9 types oral microbes when the soybean extract was added to the broth compared to the control (p<0.01). The extract showed higher anti-microbial activity against some anaerobic strains (P. gingivalis and P. intermieia). S. mutans, which causes dental caries, showed MIC at a concentration of 40 mg/ml for the soybean extract. P. gingivalis, which causes adult periodontal disease, showed MIC at a concentration of 20 mg/ml for the extract. C. albicans, which causes denture stomatitis and angular stomatitis, showed MIC at a concentration of 20 mg/ml for the extract. These results indicate that soybean extract showed anti-microbial effort against 9 types of oral microbes, and the anti-microbial effect of the extract against oral microbes was stronger against fungi than against bacteria. The anti-microbial mechanism of soybean extract against oral microbes should be investigated, and more research for clinical application is required at a level of actual intake.

A Study on the Anti-microbial Effect on S. mutans and Anti-oxidant Effect of Zanthoxylum pericarpium Extract (산초 추출물의 S. mutans 항균활성 및 항산화 효능 연구)

  • Lee, Sang-Gon;Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.181-185
    • /
    • 2011
  • Objectives : The Zanthoxylum pericarpium has been used as oriental spicy seasoning and a medicinal plant from old times. This study was performed to determine the anti-oxidant efficacy of Zanthoxylum pericarpium extract and the anti-microbial effects. Methods : We got Zanthoxylum pericarpium extract using PSE (pressurized solvent extraction) method. The anti-microbial effect of Zanthoxylum pericarpium extract was assessed on Streptococcus mutans(S. mutans) and anti-oxidant effect of the extract was assessed by measuring DPPH radical scavenging activity and SOD like activity. Results : 1. Zanthoxylum pericarpium extract had high anti-microbial activity on S. mutans. 2. DPPH radical scavenging activity significantly increased in the Zanthoxylum pericarpium extract. 3. SOD like activity also significantly increased in the Zanthoxylum pericarpium extract. Conclusions : The PSE extract from Zanthoxylum pericarpium has good anti-microbial and anti-oxidant effects in a concentration-dependent manner.

A Study on the Antimicrobial Activity of Chitosan on the MRSA by Tube Dilution Technique and Agar Plate Smear Method (Tube Dilution Technique과 Ager Plate Smear Method에 의한 키토산의 MPSA 항미생물성)

  • Choi, Jeong-Im;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.1
    • /
    • pp.71-76
    • /
    • 2003
  • Three different types of chitosan were prepared from red crab shells to study anti-microbial activity of chitosan on pathogenic bacteria, MRSA(Methicillin-resistant. Staphylococcus aureus), Water-insoluble chitosan, whose degree of deacetylation is kept over 90% and molecular weights are 20,000, 500,000, 150,000, 80,000, and 40,000, respectively. Water-soluble chitosan, whose degree of deacetylation is about 48% and molecular weights are 200,000 and 80,000. Water-soluble chitosan, whose degree of deacetylation is 82% and molecular weight is 3,900. The anti-microbial activities of three types of chitosan were investigated by Tube Dilution Technique(TDT) and Agar Plate Smear Method(APSM). And the following conclusions are made ; Chitosan having 5 different types of M.W chitosan (over 90% deacetylation) showed similar anti-microbial activities at over 0.05% concentration. Especially, chitosan having M.W 40,000 150,000 showed the excellent anti-microbial activity. The anti-microbial activity of chitosan was enhanced when the chitosan/acetic add solution was aged for 7days. The anti-microbial activity of chitosan was only shown at chitosan/acetic acid solution. The anti-microbial activity was not detected in chitosan solution dissolved in neutral pH water. Therefore, it can be concluded that the anti-microbial activity was due to NH3+ cationic ion of chitosan in acidic aqueous solution.

Studies on the Microbial Population and the Amylase Activity of the Forest Soil (삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구)

  • Lee, Hee-Sun;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 1994
  • Soil condition, total number of bacteria, soil amylase activity and microbial biomass $(CO_2-C)$ were measured at soil of different forest types. And the difference of the allelopathic effect was determined between fresh leaf extract of Quercus acutissima and Pinus rigida to the bacteria isolated from soil of different forest types. 1. Total number of bacteria in Carpinus laxiflora forest soil was 4~7 times larger than that in pinus desiflora forest soil. 2. Soil amylase activity was positively correlated with total number of soil bacteria and soil organic matter content. The amylase activity at F layer was 4~5 times larger than that at H layer, and that at H layer was 2~4 times larger than that at A layer. 3. Seasonal changes of microbial biomass showed a peak in summer, and vertical distribution of microbial biomass decreased with increasing soil depth. The microbial biomass in Pinus densiflora forest soil was larger than that in Quercus serrata forest soil. 4. Fresh leaf extract of Pinus rigida and Quercus acutissima showed an acceleration or inhibition effect on the growth of soil bacteria, and that of !. acutissima inhibited larger number of soil bacterial strains than that of P. rigida. 4.2% and 25% of soil bacterial strains isolated from soil of P. rigida and Q. acutissima forests were inhibited by fresh leaf extract of P. rigida and Q. acutissima, respectively.

  • PDF

Effect of Integrated Use of Organic and Fertilizer N on Soil Microbial Biomass Dynamics, Turnover and Activity of Enzymes under Legume-cereal System in a Swell-shrink (Typic Haplustert) Soil.

  • Manna, M.C.;Swarup, A.
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Quantifying the changes of soil microbial biomass and activity of enzymes are important to understand the dynamics of active soil C and N pools. The dynamics of soil microbial biomass C and N and the activity of enzymes over entire growth period of soybean-(Glycine max (L) Merr.)-wheat (Triticum aestivum L.) sequence on a Typic Haplustert as influenced by organic manure and inorganic fertilizer N were investigated in a field experiment. The application of farmyard manure at 4 to 16 $Mg{\cdot}ha^{-1}\;y^{-1}r^{-1}$ along with fertilizer nitrogen at 50 or 180 $kg{\cdot}ha^{-1}$ increased the mean soil microbial biomass from 1.12 to 2.05 fold over unmanured soils under soybean-wheat system. Irrespective of organic and chemical fertilizer N application, the soil microbial biomass was maximum during the first two months at active growing stage of the crops and subsequently declined with crop maturity. The mean annual microbial activity was significantly increased when manure and chemical fertilizer at 8 $Mg{\cdot}ha^{-1}$ and 50/180 N $kg{\cdot}ha^{-1}$, respectively were applied. The C turnover rate decreased by 47 to 72 % when the level of farmyard manure was increased from 4 to 8 and 16 $Mg{\cdot}ha^{-1}$. There were significant correlations between biomass C, available N, dehydrogenase, phosphatase and yield of the crops.

  • PDF

Impact of Herbicide Oxadiazon on Microbial Activity and Nitrogen Dynamics in Soil Environment

  • Rahman, Md. Mokhlesur;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.187-192
    • /
    • 2005
  • Influence of herbicide oxadiazon on soil microbial activity and nitrogen dynamics was evaluated. Soil samples were treated with oxadiazon at field and tenfold field rates and incubated. Organic amendment was added as an additional substrate for soil microorganisms. Tenfold field rate oxadiazon stimulated substrate-induced respiration (SIR) and dehydrogenase activity (DHA) in amended soil as compared to unamended soil and control treatment. Soil urease activity was not affected by oxadiazon treatment. In both amended and unamended soils, treatment of the herbicide at higher rate had not significant influence on $NH_4$-N and $NO_3$-N concentrations. Higher dose of oxadiazon was degraded in both soils, but dissipation rate in amended soil was higher than unamended soil, with half-lives ($t_{1/2}$) of 23.1 and 138.6 days, respectively. Recommended field rate did not affect microbial activity and nitrogen dynamics in soil ecosystem. Results showed influence of oxadiazon on cycling processes of nitrogen in soil was not significant however its effect on microbial activity was a tendency depending on addition of organic amendment to soil.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Anti-microbial and Anticariogenic Activity of Yam and Prunella Extract against Oral Microbes (구강병인균에 대한 마와 꿀풀추출물의 항균.항우식효과)

  • Jung, Gi-Ok;Min, Kyung-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.137-144
    • /
    • 2007
  • Yam, Prunella was stepwise extracted with hexane, chloroform, ethyl acetate, butanol, and water. Anti-microbial activity of each extract was investigated. Hexane extract was tested for anti-microbial effect on Streptocaccus mutans, one of causative factor of dental caries. Methanol extracts of 7 plants were investigated to anti-microbial effects on S. mutans KCTC 5316, P. gingivalis KCTC 5352, S. aureus KCTC 1927 by means of agar diffusion method. Methanol extract of Yam and Prunella revealed anti-microbial activity against S. mutans, P. gingivalis, and S. aureus. Also, hexane fraction of Yam revealed anti-microbial activity against S. mutans. In sequence of hexane, chloroform, ethylacetate, butanol fraction by Prunelia acted as potent anti-microbial agent on P. gingivalis. The measured MIC of hexane fraction of Yam and Prunella on S. mutans KCTC 5316 strain was 0.25 mg/ml and 0.5 mg/ml and the MIC of hexane fraction of Prunella on S. aureus was 0.5 mg/ml. The hexane fraction of Yam and Prunella suppressed viable ceil counts(VCC) of S. mutans, especially after 24 hrs. The Prunella hexane fraction suppressed VCC of S. aureus, after 12 and 24 hrs. Tested concentrations were 0.1, 0.25 and 0.5 mg/ml. the results were compared with control (0 mg/ml). The pH of S. mutans media and GTase activity were determined to evaluate the anticariogenic activity of Yam, Prunella hexane fraction. The pH were increased from 5.6 to 7.0-7.2 in concentration of 2.0 mg/ml. Yam hexane extraction revealed 35% inhibition to GTase activity and Punella inhibited 25% of GTase. These results suggest that the hexane extracts of Yam and prunella have Antibacterial activities against S. mutans, P. gingivalis, S. aureus and have preventive effect on dental caries.

The Anti-microbial Activity of Silk Fabrics Dyed with Chelidonium majus var. asiaticum extracts (애기똥풀 추출액으로 염색한 견직물의 항균성)

  • Jung, Jin-Soun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.827-832
    • /
    • 2009
  • The purpose of this study is to scientifically proof possibility of development of natural dye which has antimicrobial activity with Chelidonium majus var. asiaticum. For that silk fabrics dyed with Chelidonium majus var. asiaticum extracts were tested for anti-microbial activity. Bacterials used for test of anti-microbial activity were Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae ATCC 4352 and Trichophyton mentagrophytes IFO 5466. The results of experiment were as follows ; 1. The more the number of times of dyeing increase the more value of K/S increased. 2. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was 99.9% without reference to the number of times of dyeing. 3. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was 99.9% after irradiation of 20 hour without reference to the number of times of dyeing. 4. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was over 94.8% after dry cleaning. As above silk fabrics dyed with Chelidonium majus var. asiaticum extracts were acquired a high anti-microbial activity against Staphylococcus aureus ATCC 6538.