DOI QR코드

DOI QR Code

생리활성 펩타이드의 피부미용학적 특성 및 활용

Characteristics and Applications of Bioactive Peptides in Skin Care

  • 모상현 ((주)바이오에프디앤씨 생명과학연구소) ;
  • 정대현 ((주)바이오에프디앤씨 생명과학연구소) ;
  • 김형식 ((주)바이오에프디앤씨 생명과학연구소) ;
  • 조문진 ((주)바이오에프디앤씨 생명과학연구소) ;
  • 서효현 ((주)바이오에프디앤씨 생명과학연구소) ;
  • 김성준 (숙명여대 사회교육대학원 미용예술과)
  • Moh, Sang-Hyun (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Jung, Dai-Hyun (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Kim, Hyoung-Shik (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Cho, Moon-Jin (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Seo, Hyo-Hyun (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Kim, Sung-Jun (Graduate School of Social Education, Sookmyung Women's University)
  • 투고 : 2011.11.28
  • 심사 : 2011.12.16
  • 발행 : 2011.12.31

초록

Bioactive peptides (BAP) showed excellent cosmetic activity than bio-materials such as caffeic acid (CA), gallic acid (GA), and nicotinic acid (NA). Caffeoyl tripeptide-1 (CT-1) is a BAP that is stabilized with Gly-His-Lys (GHK) tripeptide and CA by using Fmoc solid phase peptide synthesis. Digalloyl tetrapeptide-19 (DT-19) is stabilized by combining Lys-Glu-Cys-Gly with GA and nicotinoyl tripeptide-1 (NT-1) is synthesized by GHK and NA. According to experiments, CT-1 has an excellent anti-oxidant function even with a very small amount of 10 ppm CT-1. DT-19's tyrosinase inhibition activity has the better effect of about 28.57% in 0.01% and 33.33% in 0.005% of concentration and about 7.89% in 0.001% concentration than vitamin-C. In addition, NT-1 is safer than the NA. Almost BAPs like pal-KTTKS, acetyl hexapeptide, and copper tripeptide-1 have the anti-wrinkle effect while DT-19 and NT-1 are applicable for potential BAPs focused on the whitening effect. The three kinds of BAPs like CT-1, DT-19, and NT-1 consisting of amino acids are safe to the skin, and have more excellent stability than bio-materials which are found to be unstable and cause skin irritation. Due to the high biological activity of BAP in the field of skin care, its utilization will increase constantly.

키워드

참고문헌

  1. Mary, P. L. and A. L. Cole (2007) Cosmeceutical peptides. Dermatol. Ther. 20: 343-349. https://doi.org/10.1111/j.1529-8019.2007.00148.x
  2. Vlieghe, P., V. Lisowski, J. Martinez, and M. Khrestchatisky (2010) Synthetic therapeutic peptides: science and market. Drug Discovery Today 15: 41-56.
  3. Lee, S. K. (1997) Development of recombinant human growth hormone in yeast: efficacy evaluation and safety assessment. Proceedings of the Korean Society of Toxicology Conference. October. Korea.
  4. Zhang, L. and T. J. Falla (2009) Cosmeceuticals and peptides. Clinics in Dermatology 27: 485-494. https://doi.org/10.1016/j.clindermatol.2009.05.013
  5. Fields, K., T. J. Falla, K. Rodan, and L. Bush (2009) Bioactive peptides: signaling the future. J. Cosmetic Dermatology 8: 8-13. https://doi.org/10.1111/j.1473-2165.2009.00416.x
  6. Samah, N. H. A. and C. M. Heard (2011) Topically applied KTTKS: a review. J. Cosmet. Sci. 33: 483-490. https://doi.org/10.1111/j.1468-2494.2011.00657.x
  7. Dellai, A., I. Maricic, V. Kumar, S. Arutyunyan, A. Bouraoui, and A. Nefzi (2010) Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and Met-cherimolacyclopeptide B and their analogs. Bio. Med. Chem. Lett. 20: 5653-5657. https://doi.org/10.1016/j.bmcl.2010.08.033
  8. Metaferia, B. B., M. Rittler, J. S. Gheeya, A. Lee, H. Hempel, A. Plaza, W. G. S. Stevenson, C. A. Bewley, and J. Khan (2010) Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry. Bio. Med. Chem. Lett. 20: 7337-7340. https://doi.org/10.1016/j.bmcl.2010.10.064
  9. Richter, S., T. Ramenda, R. Bergmann, T. Kniess, J. Steinbach, J. Pietzsch, and F. Wuest (2010) Synthesis of neurotensin(8-13)-phosphopeptide heterodimers via click chemistry. Bio. Med. Chem. Lett. 20: 3306-3309. https://doi.org/10.1016/j.bmcl.2010.04.038
  10. Grillo, B., D. F. Rabanal, and E. Giralt (2011) Improved Fmoc based solid phase synthesis of homologous peptide fragments of human and mouse prion proteins. J. Peptide Science 17: 32-38. https://doi.org/10.1002/psc.1293
  11. Coin, I., M. Beyermann, and M. Bienert (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Protocols 2: 3247-3256. https://doi.org/10.1038/nprot.2007.454
  12. Valerie, D., N. Pierrick, M. Jean, and L. Frederic (2009) Solventfree synthesis of peptides. Angewandte Chemie 121: 9482-9485. https://doi.org/10.1002/ange.200903510
  13. Andrey I., L. Liran, M. Amram, A. C. Gregory, F. D. William, M. Mati, L. Binhua, and G. David (2010) Role of the conformational rigidity in the design of biomimetic antimicrobial compounds. Angewandte Chemie 49: 8460-8463.
  14. Hartmann, R. and H. Meisel (2007) Food-derived peptides with biological activity: from research to food applications. Cur. Opin. Bio. 18: 163-169. https://doi.org/10.1016/j.copbio.2007.01.013
  15. Chiara, F., L. Luisa, P. Alessandro, and B. Luisa (2005) Bioactive Peptides from Libraries. Chemistry biology 12: 417-426. https://doi.org/10.1016/j.chembiol.2005.02.009
  16. Sato, A. K., M. Viswanathan, R. B. Kent, and C. R. Wood (2006) Therapeutic peptides: technological advances driving peptides into development. Current opinion in biotech. 17: 638-642. https://doi.org/10.1016/j.copbio.2006.10.002
  17. Ioannis, S., F. Demosthenes, V. Katerina, G. T. Andreas, K. Valentinos and B. Evangelos (2010) Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs 8: 629-657. https://doi.org/10.3390/md8030629
  18. Ruiz, M. A., B. Clares, M. E. Morales, and V. Gallardo (2010) Evaluation of the anti-wrinkle efficacy of cosmetic formulations with an anti-aging peptide ($Argireline^{(R)}$). Ars. Pharm. 50: 168-176.
  19. Benedetto, A. V. (1998) Environment and skin aging. Clin. Derm. 16: 129-139. https://doi.org/10.1016/S0738-081X(97)00193-4
  20. Osborne, R., L. A. Mullins, and B. B. Jarrold (2009) Understanding metabolic pathways for skin anti-aging. J. Drugs Der. 8: 4-7.
  21. Amer, M. and M. Maged (2009) Cosmeceuticals versus pharmaceuticals. Clinics in dermatology 27: 428-430. https://doi.org/10.1016/j.clindermatol.2009.05.004
  22. Bissett, D. L. (2009) Common cosmeceuticals. Clinics in dermatology 27: 435-445. https://doi.org/10.1016/j.clindermatol.2009.05.006
  23. Foldvari, M., S. Attah-Poku, J. Hu, Q. Li, H. Hughes, L. A Babiuk, and S. Kruger (1998) Palmitoyl derivatives of interferon: potential for cutaneous delivery. J. Pharmaceutical Sciences 87: 1203-1208. https://doi.org/10.1021/js980146k
  24. Robinson, L. R., N. C. Fitzgerald, D. G. Doughty, N. C. Dawes, C. A. Berge, and D. L. Bissett (2005) Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin. J. Cosmetic science 27: 155-160. https://doi.org/10.1111/j.1467-2494.2005.00261.x
  25. Lee, H. J. (2011) The use of oligopeptides as cosmetics and pharmaceuticals. Foreign high-tech research business report, pp. 9. Korean Institute of Science and Technology Information Press, Seoul.
  26. Becker-Wegerich, P. M., L. Rauch, and T. Ruzicka (2002) Botulinum toxin A: successful decollete rejuvenation. Dermatologic Surgery 28: 168-171. https://doi.org/10.1046/j.1524-4725.2002.01116.x
  27. Goldsmith, J., L. Granera, and C. Wolfe (2009) Effects of argireline on EPSP amplitude at the crayfish neuromuscular junction. Pioneering Neuroscience 10: 11-14.
  28. Blanes, M., C. J. Clemente, G. Jodas, A. Gil, G. F. Ballester, B. Ponsati, L. Gutierrez, E. P. Paya, and A. F. Montiel (2002) A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cos. Sci. 24: 303-310. https://doi.org/10.1046/j.1467-2494.2002.00153.x
  29. Gutierrez, L. M., S. Viniegra, J. Rueda, A. V. Ferrer-Montiel, J. M. Canaves, and M. Montal (1997) A peptide that mimics the C-terminal sequence of SNAP-25 inhibits secretory vesicle docking in chromaffin cells. J. Bio. Chem. 272: 2634-2639. https://doi.org/10.1074/jbc.272.5.2634
  30. Furstenau, A., G. Hazeltine, and M. Miller (2010) The effectiveness of argireline as a synthetic BoNT questioned, as examined in the neuromuscular junction of the procambarus clarkii. Pioneering Neuroscience 7: 7-10.
  31. Antonio, V. F., M. G. Luis, P. A. James, M. C. Jaume, G. Anabel, V. Salvador, A. B. Jennifer, A. Michael, and M. Mauricio (1998) The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking. FEBS Lett. 435: 84-88. https://doi.org/10.1016/S0014-5793(98)01012-6
  32. Luis, M. G., M. C. Jaume, V. F. Antonio, A. R. Juan, M. Mauricio, and V. Salvador (1995) A peptide that mimics the carboxyterminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Lett. 372: 39-43. https://doi.org/10.1016/0014-5793(95)00944-5
  33. Maquar, F. X., L. Pickartb, M. Laurentc, P. Gillerya, J. C. Monboissea, and J. P. Borela (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS Lett. 238: 343-346. https://doi.org/10.1016/0014-5793(88)80509-X
  34. Gorouhi, F. and H. I. Maibach (2009) Role of topical peptides in preventing or treating aged skin. J. Cosmetic Science 31: 327-345. https://doi.org/10.1111/j.1468-2494.2009.00490.x
  35. Wegrowski, Y., F. X. Maquart, and J. P. Borel (1992) Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex Glycyl-L-histidyl-L-lysine-Cu2+. Life Sciences 51: 1049-1056. https://doi.org/10.1016/0024-3205(92)90504-I
  36. Pickart, L. (2008) The human tri-peptide GHK and tissue remodeling. J. Bio. Sci. 19: 969-988. https://doi.org/10.1163/156856208784909435
  37. Lampe, J. W. and J. L. Chang (2007) Interindividual differences in phytochemical metabolism and disposition. Seminars in Cancer Biology 17: 347-353. https://doi.org/10.1016/j.semcancer.2007.05.003
  38. Yamamoto, I., N. Muto, K. I. Murakami, and J. I. Akiyama (1992) Collagen synthesis in human skin fibroblasts is stimulated by a stable form of ascorbate, 2-O-${\alpha}$-D-Glucopyranosyl-L-Ascorbic acid. J. Nutr. 122: 871-877.
  39. Chen, J. H. and C. T. Ho (1997) Antioxidant activities of caffeic acid and Its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45: 2374-2378. https://doi.org/10.1021/jf970055t
  40. Krizkova, L., M. Nagy, J. Polonyi, J. Dobias, A. Belicova, D. Grancai, and J. Krajcovic (2000) Phenolic acids inhibit chloroplast mutagenesis in euglena gracilis. Mutat. Res. 469: 107-114. https://doi.org/10.1016/S1383-5718(00)00059-0
  41. Shahrzad, S., K. Aoyagi, A. Winter, A. Koyama, and I. Bitsch (2001) Research communication: pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutrition 131: 1207-1210.
  42. Kang, N. J., K. W. Lee, B. J. Shin, S. K. Jung, M. K. Hwang, A. M. Bode, Y. S. Heo, H. J. Lee, and Z. Dong (2009) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30: 321-330.
  43. Jung, U. J., M. K. Lee, Y. B. Park, S. M. Jeon, and M. S. Choi (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharm. Exp. Ther. 318: 476-483. https://doi.org/10.1124/jpet.106.105163
  44. Ow, Y. Y. and I. Stupans (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Current Drug Metabolism 4: 241-248. https://doi.org/10.2174/1389200033489479
  45. Kroes, B. H., A. J. J. Berg, H. C. Q. Ufford, H. Dijk, and R. P. Labadie (1992) Anti-inflammatory activity of gallic acid. Planta. Med. 58: 499-504. https://doi.org/10.1055/s-2006-961535
  46. Kubo, I., Q. X. Chen, and K. Nihei (2003) Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chemistry 81: 241-247. https://doi.org/10.1016/S0308-8146(02)00418-1
  47. Kubo, I., I. Kinst-Hori, Y. Kubo, Y. Yamagiwa, T. Kamikawa, and H. Haraguchi (2000) Molecular design of antibrowning agents. J. Agric. Food Chem. 48: 1393-1399. https://doi.org/10.1021/jf990926u
  48. Kim, Y. J. (2007) Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 30: 1052-1055. https://doi.org/10.1248/bpb.30.1052
  49. Kim, S. H., C. D. Jun, K. H. Suk, B. J. Choi, H. J. Lim, S. J. Park, S. H. Lee, H. Y. Shin, D. K. Kim, and T. Y. Shin (2006) Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences 91: 123-131. https://doi.org/10.1093/toxsci/kfj063
  50. Chen, L. G., W. L. Chang, C. J. Lee, and L. T. Lee (2009) Melanogenesis inhibition by gallotannins from chinese galls in B16 mouse melanoma cells. Biol. Pharm. Bull. 32: 1447-1452. https://doi.org/10.1248/bpb.32.1447
  51. Gehring, W. (2004) Nicotinic acid/niacinamide and the skin. J. Cos. Der. 3: 88-93.
  52. Loren, P. (2002) Copper peptides for tissue regeneration. Speciality Chemicals 22: 29-31.
  53. Hakozaki, T., L. Minwalla, J. Zhuang, M. Chhoa, A. Matsubara, K. Miyamoto, A. Greatens, G. G. Hillebrand, D. L. Bissett, and R. E. Boissy (2002) The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Bri. J. Der. 147: 20-31.
  54. Nico, S., V. Jana, and P. Stan (2009) The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. https://doi.org/10.3390/ijms10125326
  55. Boonme, P., V. Junyaprasert, B. Varaporn, N. Suksawad, and S. Songkro (2009) Microemulsions and nanoemulsions: novel vehicles for whitening cosmeceuticals. J. Biomedical Nanotechnology 5: 373-383. https://doi.org/10.1166/jbn.2009.1046
  56. Ferruti, P. and R. Paoletti (1978) High polymers containing nicotinic acid, process for their preparation and their use. US Patent 4,067,876.
  57. Shen, B., D. M. Makley, and J. N. Johnston (2010) Umpolung' reactivity in semiaqueous amide and peptide synthesis. Nature 465: 1027-1032. https://doi.org/10.1038/nature09125
  58. Youhei, S. and K. Yoshiaki (2006) Click peptides-chemical biology-oriented synthesis of alzheimer's disease-related amyloid ${\beta}$ peptide (A${\beta}$) analogues based on the o-acyl isopeptide method. Chem. Bio. Chem. 7: 1549-1557. https://doi.org/10.1002/cbic.200600112
  59. Han, S. Y. and Y. A. Kim (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60: 2447-2467. https://doi.org/10.1016/j.tet.2004.01.020
  60. Grillo-Bosch, D., F. Rabanal, and E. Giralt (2011) Improved Fmoc based solid phase synthesis of homologous peptide fragments of human and mouse prion proteins. J. Peptide Science 17: 1075-2617.
  61. Sarika, N. and A. E. B. Heather (2010) Cyclic peptides as potential therapeutic agents for skin disorders. Peptide Science 94: 673-680. https://doi.org/10.1002/bip.21476
  62. Matsuzaki, K. (2009) Control of cell selectivity of antimicrobial peptides. BBA 1788: 1687-1692. https://doi.org/10.1016/j.bbamem.2008.09.013

피인용 문헌

  1. Preparation and Evaluation of the Effect of Acetyl Hexapeptide-8 Ampoule for Scalp Treatment vol.19, pp.3, 2011, https://doi.org/10.20402/ajbc.2021.0199