DOI QR코드

DOI QR Code

Optimization for Production of Exo-β-1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae

Saccharomyces cerevisiae에서 Aspergillus oryzae 유래의 exo-β-1,3-glucanase (laminarinase)의 생산 최적화

  • Kim, Min-Jung (Department of Biomaterial Control (BK21 program)) ;
  • Nam, Soo-Wan (Department of Biomaterial Control (BK21 program)) ;
  • Tamano, Koichi (Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Machida, Masayuki (Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Kim, Sung-Koo (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control (BK21 program))
  • 김민정 (동의대학교 바이오물질제어학과) ;
  • 남수완 (동의대학교 바이오물질제어학과) ;
  • ;
  • ;
  • 김성구 (부경대학교 생물공학과) ;
  • 김연희 (동의대학교 바이오물질제어학과)
  • Received : 2011.07.28
  • Accepted : 2011.10.17
  • Published : 2011.10.31

Abstract

In this study, a EXGA gene code for exo-β-1,3-glucanase from Aspergillus oryzae was overexpressed and secretory produced in Saccharomyces cerevisiae. To overexpress the β-1,3-glucanase, pGInu-exgA and pAInu-exgA plasmids having GAL10 and ADH1 promoter, respectively, and exoinulinase signal sequence (Inu s.s) were constructed and introduced in S. cerevisiae SEY2102 and 2805. The recombinant β-1,3-glucanase was successfully expressed and secreted into the medium and the β--1,3-glucanase activity in 2102/pGInu-exgA and 2102/pAInu-exgA strain were 5.01 unit/mL and 4.09 unit/mL, respectively. In the 2805/pGInu-exgA and 2805/pAInu-exgA strain, the β-1,3-glucanase activity showed 3.23 unit/mL and 3.22 unit/mL, respectively. Secretory efficiency in each strain reached 95% to 98%. Subsequently, the recombinant β1,3-glucanase was used for ethanol production. Ethanol productivity in 2102/pAInu-exgA strain was 0.83 g/L when pre-treated Laminaria japonica which has initial reducing sugar of 1.4 g/L was used as substrate. It is assumed that the polysaccharides of Laminaria japonica was effectively saccharified by recombinant β-1,3-glucanase, resulting in increase of ethanol productivity. These results suggested that recombinant β-1,3-glucanase was efficiently overexpressed and secreted in S. cerevisiae SEY2102 as host strain by using ADH1 promoter-Inu s.s system.

Keywords

References

  1. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Kor. Ind. Eng. Chem. 20: 517-521.
  2. Pitson, S. M., R. J. Seviour, and B. M. McDougall (1993) Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb. Technol. 15: 178-192. https://doi.org/10.1016/0141-0229(93)90136-P
  3. Guegen, Y., P. Chemardin, G. Janbon, A. Arnaud, and P. Galzy (1996) A very efficient $\beta$-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agric. Food Chem. 44: 2336-2340. https://doi.org/10.1021/jf950360j
  4. Shoseyov, O., A. B. Bravdo, R. Ikan, and I. Chet (1990) Immobilized endo-$\beta$-glucosidase enriches flavor of wine and passion fruit juice. J. Agric. Food Chem. 27: 1973-1976.
  5. Vasserot, Y., A. Arnaud, and P. Galzy (1995) Monoterpenyl glycosides in plants and their biotechnological transformation. Acta. Biotechnol. 15: 77-95. https://doi.org/10.1002/abio.370150110
  6. Gil, V. J., P. Manzanares, S. Salvador Genoves, S. Valles, and L. Gonzalez-Candelas (2005) Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Food Microbiol. 103: 57-68. https://doi.org/10.1016/j.ijfoodmicro.2004.11.026
  7. Kim, H., J. H. Ahn, J. M. Gorlach, C. Caprari, J. S. Scott-Craig, and J. D. Walton (2001) Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum. Mol. Plant Microbe Interact. 14: 1436-1443. https://doi.org/10.1094/MPMI.2001.14.12.1436
  8. Vazquez de Aldana, C. R., J. Correa, P. San Segundo, A. Bueno, A. R. Nebreda, E. Mendez, and F. del Rey (1991) Nucleotide sequence of the exo-1,3-beta-glucanase encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97: 173-182. https://doi.org/10.1016/0378-1119(91)90049-H
  9. van de Rhee, M. D., O. Mendes, M. W. Werten, H. J. Huizing, and H. Mooibroek (1996) Highly efficient homologous integration via tandem exo-beta-1,3-glucanase genes in the common mushroom. Agaricus bisporus. Curr. Genet. 30: 166-173. https://doi.org/10.1007/s002940050116
  10. Jiang, B., A. F. Ram, J. Sheraton, F. M. Klis, and H. Bussey (1995) Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol. Gen. Genet. 248: 260-269. https://doi.org/10.1007/BF02191592
  11. Tamano, K., Y. Satoh, T. Ishii, Y. Terabayashi, S. Ohtaki, M. Sano, T. Takahashi, Y. Koyama, O. Mizutani, K. Abe, and M. Machida (2007) The $\beta$-1,3-exoglucanase gene exgA (exg1) of Aspergillus oryzae is required to catabolize extracellular glucan, and is induced in growth on a solid surface. Biosci. Biotechnol. Biochem. 71: 926-934. https://doi.org/10.1271/bbb.60591
  12. Lim, M. Y., J. W. Lee, J. H. Lee, Y. H. Kim, J. H. Seo, and S. W. Nam (2007) Secretory overexpression of clostridium endoglucanase A in Saccharomyces cerevisiae using GAL10 promoter and exoinulinase signal sequence. J. Life Science 17: 1248-1254. https://doi.org/10.5352/JLS.2007.17.9.1248
  13. Choi, G. W., H. W. Kang, Y. R. Kim, and B. W. Chung (2008) Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks. Kor. Chem. Eng. Res. 46: 977-982.
  14. van Rensburg, P., W. H. van Zyl, and I. S. Pretorius (1997) Overexpression of the Saccharomyces cerevisiae exo-$\beta$-1,3-glucanase gene together with the Bacillus subtilis endo-$\beta$-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-$\beta$-1,4-glucanase gene in yeast. J. Biotechnol. 55: 43-53. https://doi.org/10.1016/S0168-1656(97)00059-X
  15. Laloux, O., J. P. Cassart, J. Delcour, J. V. Beeumen and J. Vandenhaute (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS J. 289: 64-68. https://doi.org/10.1016/0014-5793(91)80909-M
  16. Emr, S. D., R. Schekman, M. C. Flessel, and J. Thorner (1983) An MF$\alpha$1-Suc2 ($\alpha$-factor invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA 80: 7080-7084. https://doi.org/10.1073/pnas.80.23.7080
  17. Park, H. S., H. C. Kim, D. H. Shin, J. K. Kim, and S. W. Nam (2005) Expression of Thermomonoepora fusca exoglucanase in Saccharomyces cerevisiae and its application to cellulose hydrolysis. Kor. J. Microbiol. Biotechnol. 33: 267-273.
  18. Gietz R. D. and R. H. Schiestl (1995) Transforming yeast with DNA. Methods Mol. Cell. Biol. 5: 225-269.
  19. Jijakli, M. H. and P., Lepoivre (1998) Characterization of an exo-$\beta$-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytiscinerea on apples. Phytopathology 88: 335-343. https://doi.org/10.1094/PHYTO.1998.88.4.335
  20. Bara, M. T. F., A. L. Lima, and C. J. Ulhoa (2003) Purification and characterization of an exo-$\beta$-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol. Lett. 219: 81-85. https://doi.org/10.1016/S0378-1097(02)01191-6
  21. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277: 680-685.
  23. Chung, B. H., S. W. Nam, B. M. Kim, and Y. H. Park (1996) Highlydfficient secretion of heterologous protein from Saccharomyces cerevisiae using inulinase signal peptide. Biotechnol. Bioeng. 49: 473-479.
  24. Kang, H. A., S. W. Nam, K. S. Kwon, B. H. Chung, and M. H. Yu (1996) High-level secretion of human $\alpha$1-antitrypsin form Saccharomyces cerevisiae using inulinase signal sequence. J. Biotechnol. 48: 15-24. https://doi.org/10.1016/0168-1656(96)01391-0
  25. Lim, C. K., Y. K. Kim, K. H. Kim, C. H. Kim, S. K. Rhee, and S. W. Nam (2004) Expression and secretion of Zymononas mobilis levansucrase in Saccharomyces cerevisiae. Kor. J. Life Sci. 14: 429-434. https://doi.org/10.5352/JLS.2004.14.3.429

Cited by

  1. Enhancement of β-1,3-Glucanase Activity by Sequential δ-Sequence Mediated Integration in Saccharomyces cerevisiae vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1046
  2. Construction of an expression system for the secretory production of recombinant α-agarase in yeast vol.34, pp.6, 2012, https://doi.org/10.1007/s10529-012-0864-0