References
- R. Agarwal, M. Meehan and D. O'regan, Fixed pointtheory and applications, CambredIge Tracts in Mathematics,New York: Cambridge University Press, 2001, 178-179.
- A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential, Equations, 111(2005), 1-8.
- A. Anguntj and M. Mallika Arjunan, Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Studies, 16(1) (2009), 33-48.
- S. Baghli, M. Benchohra, Per!urbed functional and neutra1 functional evolution equations with infìnite delay in Frechet spaces, Electronic Journal of Differential Equations (69), (2008), 1-19.
- J. Banas and K. Goebel, "Measure of noncompactness in Banach spaces," Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980.
- D.D. Bainov and P.S. Simeonov, lmpulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993.
- M. Benchohra, S. Djebali and T. Moussaoui, Boundary value problems fof doubly perturbed first order ordinary differential systems, E .J. Qualitative Theory of Diff. Equ., 11(2006), 1-10.
- M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive neutral functional differential inclusions in Banach space, Appl. Math. Lett., 15(8)(2002), 917-924.
- M. Benchohra and A. Ouahab, Impulsive neutral functional differential Equations with variable times, Nonlinear Anal., 55(6)(2003), 679-693. https://doi.org/10.1016/j.na.2003.08.011
- M. Benchohra, J. Henderson and S.K. Ntouyas, Imfulsive Differential Equations and Inclusions, Hindawi Pub lishing Corporation, New York, 2006.
- Y.K. Chang, A. Auguraj and M.Mallika Arjunan, Existence results for non-densely defined neutra1 impulsive differential inclusions with nonlocal conditions, J. Appl. Math. Comput., 28(2008), 79-91. https://doi.org/10.1007/s12190-008-0078-8
- Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear Anal.: Hybrid Systems 2(1)(2008), 209-218. https://doi.org/10.1016/j.nahs.2007.10.001
- Y.K. Chang, V. Kavitha and M. Mallika Arjunan, Existence results for impulsive neutral differential and inte grodifferential equations with nonlocal conditions via fractional operator, Nonlinear Anal.: Hybrid Systems, 4(1)(2010), 32-43. https://doi.org/10.1016/j.nahs.2009.07.004
- Q. Dong, Z. Fan and G. Li, Existence of solutions to nonlocal neutral functional differential and integrodiffer ential equations lnlern J. Nonlinear Sci., 5 (2008), No.2, 140-151.
- Q. Dong and G. Li, Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces, Electronic Journal of Differential Equations, 47(2009), 1-13.
- Q. Dong, Double perburbed evolution equations With infinite delay in Banach spaces. J.Yangzhou Univ. (Natural Science Edition).11(4),(2008),7-11.
- A. Freidman, Partial Differential Equation, Holt, Rinehat and Winston, New York. (1969).
- L. Guedda, On the existence of mild solutions for neutral functional differential inclusions in Banach spaces, Electronic J. Qualitative Theory of Differential Equations, 2(2007)1-15.
- J.K. Hale and J. Kato, Phase space for retarded equations With infinite delay, Funkcial Ekvac, (1978)21:11-41.
- H. P. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. TMA, (7)(2002), 1351-1371.
- E. Hernández, M. Pierri and G. Goncalves, Existence results for an impulsive abstract partial differential equa tlons with state-dependent delay, Comput. Math. Appl. 52(2006),411-420. https://doi.org/10.1016/j.camwa.2006.03.022
- E. Hernández, M. Rabello and H.R. Henriquez, Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331(2007), 1135-1158. https://doi.org/10.1016/j.jmaa.2006.09.043
- E. Hernández and H.R. Henriquez, Impulsive partial neutral differential equations, Appl. Math. Lett., 19(2006), 215-222. https://doi.org/10.1016/j.aml.2005.04.005
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin (1983).
- Y.V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dynam. Contin. Discrete Impuls. Syst., 3(1)(1997), 57-88.
- Y.V. Rogovchenko, Nonlinear impulsive evolution systems and application to population models, J. Math. Anal. Appl., 207(2)(1997),300-315. https://doi.org/10.1006/jmaa.1997.5245
- Y. Runping, Existence of solutions for impulsive partial neutral functional differential equation with infinite delay, Nonlinear Analysis, (2010), doi:10.1016/j.na. 2010.03.008.
- Y. Runping and G. Zhang, Neutral functional differential equations of second-order with infinite delays, Electronic Journal of Differential Equations, 36(2010),1-12.
- Y. Runping, Q. Dong and G. Li, Existence of solutions for double perturbed neutral evolution equation, Intern J. Nonlinear Sci., 5 (2009), No.3, 360-367.
- X. Xue, Semilinear nonlocal differential equations with measure of noncompactness in Banach space, Journal of Nanjing University Mathematical Bi-quarterly, 24(2)(2007), 264-275.
Cited by
- Solvability of impulsive partial neutral second-order functional integro-differential equations with infinite delay vol.2013, pp.1, 2011, https://doi.org/10.1186/1687-2770-2013-203
- GLOBAL EXISTENCE FOR VOLTERRA-FREDHOLM TYPE FUNCTIONAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS vol.17, pp.1, 2013, https://doi.org/10.12941/jksiam.2013.17.017