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ABSTRACT. In this paper, we study the existence of mild solutions for double perturbed impulsive
neutral functional evolution equations with infinite delay in Banach spaces. The existence of mild so-
lutions to such equations is obtained by using the theory of the Hausdorff measure of noncompactness
and Darbo fixed point theorem, without the compactness assumption on associated evolution system.

An example is provided to illustrate the theory.

1. INTRODUCTION

In recent years, the theory of impulsive differential equations has become an important area of
investigation stimulated by their numerous applications to problems arising in mechanics, electrical
engineering, medicine, biology, ecology, etc. Relative to this matter, we refer the reader to Bainov
and Simeonov [6], Rogovchenko [25, 26] and Hernndez [21, 22, 23]. For other contributions on the
impulsive problem see [2, 10, 13]. Dong [14, 15, 16] , Guedda [18], Banas [5], Heinz [20], Runping
[27, 28] and Xue [30] studied some functional differential equations under the conditions in respect
of the measure of noncompactness.

Neutral differential equations arise in many areas of applied mathematics and for this reason these
equations have received much attention in the last decades. The literature relative to ordinary and
partial neutral functional differential equations is very extensive and we refer the reader to [3, 7, 8,
9, 11, 12] and the references therein.
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Recently Selma Baghli et al. [4] studied the existence of mild solutions partial perturbed evolution
equation with infinite delay in Frechet spaces described in the form

y/(L) = A(L)y(t) + J)(Lv yt) + g(La yt)a aeleJ= [07 +OO),
yo=w € B,

and perturbed neutral evolution equation with infinite delay in Frechet spaces described in the form
d
W) = h(t.ye) = A)y() + f(t.ye) + 9t ye), aete J=[0,+00),
Yo =@ € B,
by using the Avramescu Nonlinear Alternative theorem.
Very recently Runping Ye et al. [29] studied the existence of mild solutions for double perturbed
neutral functional evolution equations with infinite delay described in the form
d
= (@(t) = h(t,20)) = AQ)a(t) + (T, 20) + 9(t, ), te€I=10,d],
Top=pE€ 87

by using the Darbo fixed point theorem
In this paper, we study the existence of mild solutions for double perturbed impulsive neutral
functional evolution equations with infinite delay described in the form

d

= @(t) = h(t,20)) = A@)a(t) + f(t,20) + 9(t,20), te€l=10.d], (L.1)
g = € B, (1.2)
Ax(t;) = Li(x,), 1=1,2,...,n, (1.3)

where {A(¢) : t > 0} is a family of linear closed operators in a real Banach space X that generates
an evolution system {U(¢,s) : 0 < s < t < oo} and D(A(¢)) C X is dense in X; the history x; :
(—00,0] = X, 75(0) = x(s + ), belongs to some abstract phase space B described axiomatically;
g, f+ h, I; are appropriate functions and the symbol A(t) represents the jump of the function ¢ at ¢,
which is defined by A&(t) = £(tT) — £(t7).

In this paper, by using the tools involving the measure of noncompactness and fixed point the-
ory, we obtain existence of mild solution of double perturbed impulsive neutral functional evolution
equations (1.1)-(1.3) without the assumption of compactness or equicontinuity on the associated
semigroup.

2. PRELIMINARIES

Now we introduce some definitions, notations and preliminary facts which are used throughout
this paper.

Let {A(t) : t > 0} is a family of linear closed operators in a real Banach space X into itself and
D(A(t)) = D is independent of ¢.

Definition 2.1 ([4]). The family of bounded linear operators {U(t,s) : 0 < s <t < oo} on X is

called an evolution system if the following properties are satisfied:

(i) U(t,t) = I where I is the identity operator in X;
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(i) U(t, s)U(s,r) = U(t,r) forevery 0 < r < s <t < 4o0;
(iii) U(L, s) € B(X) the space of bounded linear operator on X, where for every (L,s) € {(¢, s) :
0 < s <t < +oo} and for each v € X, the mapping (t,s) — U(t, s)x is continuous.

Definition 2.2. The evolution system {U(t,s) : 0 < s < t < oo} is said to be equicontinuous if for
each bounded subset B in X, {s — U(t, s)x : © € B} is equicontinuous for t > Q.

For additional details about evolution families, we refer the reader to Pazy [24]. To consider
the impulsive conditions, it is convenient to introduce some additional concepts and notations. We
say that a function u : [0,7] — X is a normalized piecewise continuous function on [o, 7] if u is
piecewise continuous and left continuous on (o, 7]. We denote by PC([o, 7]; X) the space formed
by the normalized piecewise continuous functions from [, 7] into X . In particular, we introduce the
space PC formed by all functions « : [0, a] — X such that u is continuous at { # {;, i = 1,...,n. It
is clear that PC endowed with the norm of uniform convergence is a Banach space.

In what follows, we put tg = 0, tn+1 = a, and for u € PC, we denote by u; € C([ti, tit1]; X),
i = 0,1, ...n, the function given by

u(t), fort € (t, ti+1]7

wl) =
' u(t]), fort=t.

Moreover, for B C PC, we employ the notation R i =20,1,...,n, for the sets El ={u; : u € B}.
We employ an axiomatic definition of the phase space I3 which is similar to that introduced by
Hale and Kato [19] and it is appropriated to treat impulsive neutral functional evolution equations.

Definition 2.3 ([19]). The phase B is a linear space of functions mapping (—o0, 0] into X endowed
with a seminorm || - || g and satisfying the following axioms:
(A) Ifw: (—o0,0 +b] = X, b >0, is such that x|, ;1) € PC([o,0 +b] : X) and x5 € B,
then for every t € [0, o + b) the following conditions hold:
(i) x¢isin B,
(i) [[=(0)l] < Hllz:ls,
(iii) [lzlls < K(f — o)sup{[lz(s)[| : 0 < s < t} + M(t — 0)|z]

B, Wwhere H > 0
is a constant; K, M : [0,00) — [1,00), K is continuous, M is locally bounded and
H, K, M are independent of x(+).

(B) The space B is complete.

Definition 2.4 ([5]). The Hausdor{f’s measure of noncompactness xy is defined by
xy (B) = inf{r > 0, B can be covered by finite number of balls with radii r},

for bounded set B in any Banach space Y .

Lemma 2.1 ([S]). Let Y be a real Banach space and B, C C'Y be bounded, the following properties
are satisfied:
(1) Bis pre-compact if and only if xy (B) = 0;
(2) xy(B) = xy(B) = xy(convB), where B and convB are the closure and the convex hull
of B respectively;
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(3) xy(B) < xy(C) when B C C;

(4) xy(B+C) < xy(B)+ xy(C)where B+ C ={z+y; € B, ye C};

(5) xv(BUC) =max{xy(B).xy(C)};

(6) xy(AB) = |Alxy (C) for any X € R;

(7) If the map Q : D(Q) CY — Z is Lipschitz continuous with constant k then xz(QB) <
kxy(B) for any bounded subset B C D(Q), where Z is a Banach space;

(8) If {W,},}2] is a decreasing sequence of bounded closed nonempty subset of Y and lim,, . Xy (W)

0, then ﬂ W, is nonempty and compactin'Y .

n=1

Definition 2.5 ([26]). The map Q : W C Y — Y is said to be a xy-contraction if there exists
a positive constant k < 1 such that xy (Q(C)) < kxy (C) for any bounded close subset C C W
where Y is a Banach space.

Lemma 2.2 ((Darbo) [1]). If W C Y is closed and convex and O € W, the continuous map () :
W — W is a xy-contraction, if the set {x € W = Az} is bounded for 0 < X\ < 1, then the map
Q has at least one fixed point in W.

Lemma 2.3 ((Darbo-Sadovskii) [5]). If W C Y is bounded closed and convex, the continuous map
Q : W — W is a xy-contraction, then the map Q has at least one fixed point in W.

In this paper we denote by x the Hausdorff’s measure of noncompactness of X, by x¢ the Haus-
dorff’s measure of noncompactness of C([0, a]; X) and by xp¢ the Hausdorff’s measure of noncom-
pactness of PC([0, a]; X). To discuss the existence we need the following auxiliary results.

Lemma 2.4 ([5]). (1) If W C C([a, b]; X) is bounded, then x(W (t)) < xc(W), for any t € [a, b),
where W(t) = {u(t) :u e W} C X;
(2) If W is equicontinuous on [a,b], then x (W (L)) is continuous for | € |a,b], and
xo(W) = sup{x(W(1)). ¢ € [a,b]};

(3) If W c C(la,bl; X) is bounded and equicontinuous, then x (W (t)) is continuous for t €
[a, b], and

(/ W(s)ds ) < /t V(W (s))ds, for all t € [a,b],

where fat W(s)ds = {fatl(b)ds Dx € W}
Lemma 2.5 (Lemma 2.9 [27]). (1) If W C PC is bounded, then x(W (t)) < xpc(W), for any
t € [a,b], where W(t) ={u(t) :ue W} C X;
(2) If W is piecewise equicontinuous on [a,b], then x (W (t)) is piecewise continuous for t €
[a, b], and
xpe(W) = sup{x(W(t)), t € [a,]};

(3) IfW C PC is bounded and piecewise equicontinuous, then x (W (t)) is piecewise continuous
fort € [a,b], and

x( [W(s)ds) < /tX(W(s))dg, forallt € [a,b]

a
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t t
where [TV (s)ds = {fa 2(s)ds : x € W}.

Lemma 2.6. If the evolution system {U(t,s) : 0 < s < t < oo} is equicontinuous and 1 €
L([0, a]; RY), then the set {fot U(t,s)x(s)ds : ||z(s)|| < n(s) forae 0 < s <t < a}is equicon-
tinuous.

3. MAIN RESULTS

For the system (1.1)-(1.3), we assume the following hypotheses are satisfied.

H; The function f : I x B — X satisfies the following conditions:
(i) Foreach = : (—o0,a] — X, zp € B and z|; € PC, the function f(-, ) is strongly
measurable for all z € B and f(¢, -) is continuous for a.e. ¢ € [0, b].
(ii) There exists an integrable function m : I — [0,4o00) and a monotone continuous
nondecreasing function W : [0, +00) — (0, +00) such that

LAt < m@W(1ls).  (66) € T x B,
(iii) There exists an integrable function 7 : I — [0, +00), such that
X(U(t, s)f(t, u)) <n(t) sup x(D(B)) forae.s,t €l
—00<0<0
where D(0) = {v() : v € D}.
Ho There exists an continuous function L : [0, a] — R™, such that
lg(t,w) — g(t.0)| < L@l|u—vls. Vu.v e B.
Hj3 There exist positive constants L1, L2 and Ly, such that
|A@)R(t,v)|| < Lpi||lv]lB + Lne, (t,v) € I x Band
A1) h(t1, v1) — A(t2)h(t2, v2)|| < Lps(llt1 — ta|| + |lv1 — v2llB), (ti,v) € I x B, i =1,2.
H, There exist positive constants L; such that
[1i(¥1) = Li(g2)ll < Lillr —4ells, 5 € B, =12, i=12,..,n
Hj5 There exist positive constants C’f j=1,2,i=1,2,...,n, such that
L)l < Clllls + CF,  forevery ¢ € B.

He (a) The evolution system {U(¢,s) : 0 < s < ¢ < oo} is equicontinuous and there exist a
positive constant A/ such that

U, s)|| < Mfor0<s<t<a.

[ [t + ;
(b) f—j% Jo max{m(t), L(t)}ds < [ m, where
1 = KyM[[1(0, )| + (MK, H + M) pll + KoLna(Mo + M) + KoM > C7,
o<t; <t
= /J/I N
1-— /1,2’

pi2 = KoLy (Mo + M)+ KM Y~ Cl <1, ¢
0<t; <t

K, = sup K(t)and M, = sup M(%).
t€[0,a] te[0,a]
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(¢) M [ (Lps + L(s)) K (s)ds + KoM Y7 Li + [ n(s)ds < 1.
(d) 0 € p(A(t)) for ¢ € I, and there exist a constant My > 0, such that || A~1(¢)|| < Mo
fort € 1.

Lety : (—oo, 0] — X be the function defined by yp = ¢ such that y(¢) = U(t, 0)(¢(0) — h(0. ¥))
on I. Clearly, ||yl < (KoM H + M,)||¢|l5 + KpM| R(0, p)]|.
We now define the mild solution for the initial value problem (1.1)-(1.3).

Definition 3.6. A function x : (—oo,a] — X is called a mild solution of the initial value problem
(1.1)-(1.3) if 7o = ¢; 7(y|j0,a) € PC and
t
x(t) =U(t,0)(¢(0) — h(0,¢)) + h(t, z¢) +/ Ul(t,s)A(s)h(s,zs)ds
0

t
+/ U(t,s)(f(s,zs) + g(s,xs))ds + Z Ul(t,t)(xy,), tel=][0,al

0 o<t; <t
Now we are in a position to establish our main results.

Theorem 3.1. [fthe hypotheses H1, Ha, Hs, Hy, Hs and Hg are satisfied, then there exists at least
one mild solution to the initial value problem (1.1)-(1.3).

Proof. Let S(a) be the space S(a) = {T i (—o00.al = X; mp =0, 2| € PC} endowed with the
supremum norm || - ||o. Let I' : S(a) — S(a) be the map defined by

0, t e (—o0,0],
h(t, YUt $)A(s)h(s, 24 + ys)d

Ta(t) = ( ,txt + )+ Jo Ut s)A(s)h(s, x5 + ys)ds o
+ fo U(tv S)(f(s, Ts + ?/s) + .(](37375 + ?/S))ds
+ Zo<ti<t U(t, ti) (e, + ), tel.

Due to the fact that |z: + yi]|lg < KoM ||R(0, 9)|| + (KoM H + M,)|¢lls + Kal| x||t, where
|zl = supg<s<t [|2(s)[, T is well defined with values in S(a). It is easy to see that if = is a fixed
point of I', then = + y is a mild to the initial value problem (1.1)-(1.3). In the sequel we will prove
that there exists a fixed point of I" by Darbo’s fixed point theorem.

We first note that, I" is continuous on the basis of the axioms of phase space, the Lebesgue
Dominated Convergence Theorem and the conditions Hy, Ha and Hg, we assert that the function
s = U(t,s)A(s)h(s,zs + ys) and s — (f(s, x5 + ys) + g(s, 25 + ys)) are integrable on [0, ¢] for
every t > 0 and every bounded z € S(a). In fact, let ||z||, < r, where r is a positive constant. In
view of Hg, we have

UL, ) A(s)h(s, zs + ys) || <M (Lna|[xs + sl + Ln2)
<M (Lp1 (KoM R0, 0) || + (K MIT + M) | ells + Kar) + Lig),

10t )(f (s, 0 + )+ 955 + 95))
< M(m(t)W (s + sl8) + L2 + vl + lg(s, 0)])
< M(m(OW (K M0, 9)|| + (KMH + M,)|ell5 + Kor)
+ Ly(KM1(0, )| + (KaMH + M) plls + Kar) + [lg(s.,0))
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where L, = max;c; L(t). Hence the function s — U(t. s)A(s)h(s, s + ys) and s — U(t, s)
(f(s,zs 4+ ys) + g(s, zs + ys)) are integrable on [0, ¢] for every ¢ > 0.
Next, we show that the set {x € PC : 2 = AI'z} is bounded for 0 < \ < 1. Let 2* be a solution
of z = A'z for 0 < A < 1. Then
I 22 + yells < KaM|IR(0, @) || + (KoM H + Ma)l|oll5 + Kall 2 |-
Let v} (t) = Ko M||h(0, )| + (KoM H + Mo) [ 2]l5 + Kal| 2
lz*@)I] = [INCaA ()] < A[Ta(@) |

t, for each ¢t € I, then

SMA(W() (123 +ysllz) + L)l + yslls)ds

¢
+ Ly (Mo + Ma)v () + Lpa(Mo + Ma) + _M/ llg(s,0)|ds
0

+M Y (ClA) +CY)

0<t;<t

t
2] < M/O (m($)W (|22 + yslls) + L(s) a2 + ysllp)ds + M Y CF

0<t;<t

b (L (Mo Ma) + MY COD) + Lia(Mo + Ma) + M / lg(s.0) s,
0<t;<t

which implies that

t
o\ (8) K MO, )| + (KoM H + M)|ols + Ko (M /0 (m(s)W ([l23 + ysll)

L(s) | + ysllg)ds + M > C,»2+(Lh1(Mo+Ma)+M 3 a)w
o<t; <t o<t; <t

t
+ Lia(Mo + Ma) + M [ lg(s,0)ds):
0

Consequently,

KM [t
M) e+ 1—u2/( ()W (0()) + L(s)v*(s))ds. (32)

Denoting by /3, (#) the right-hand side of (3.2), we get

By(t) =

= (m(s)W (v*(s)) + L(s)v*(s))

< 2 falt) LYW (P0) + 5

therefore,
By(t) K M
< max{a(t), L(t)}, 3.3)
WD) 50 - 1y D)
Integrating (3.3) and applying our hypothesis Hg(a), we obtain

/“W) ds K, M / ax{a(s). L()}ds < too ds
m =~
. W ts s 1-p e Wis)+s
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which implies that 3, (t) is bounded in I. Thus, v*(#) is bounded on I, and z:*(-) is also bounded on
I

Now, we show that I"'is x —contraction. To clarify this, we decompose I" in the form I' = I'; +1,
for ¢t > 0, where

¢ t
Tx(t) = h(t, 2 +y) + A U(t,s)A(s)h(s, xs + ys)ds + A Ul(t,s)g(s,zs + ys)ds

+ > Ul t) Lz, + ),  t€0,a],
0<t; <t

Dox(t) = A U(t,s)(f(s,zs +ys)ds, te][0,al.

First, we show that I'y is Lipschitzian on S(a). Take 21, 2o € S(a) arbitrary, on account of definition
2.1 and hypotheses, we get that

waﬂﬂffwﬂﬂﬂéﬂllﬂu@A@XM&ru+y0fh®w%+y9Mﬂ

t

+1 [ Ut s)(g(s, w15 +ys) — 95, 225 + ys))ds|
0

+M Y Lillza, — xo,lls

0<t; <t

SMA%J@mmMM%mmW

0<7<a

+M/O L(s)K(s) sup [[z1(r) — 2o(r)||ds

0<t<a

+ MK, Z Lillz1 — z2]|a
0<t; <t

a n
<M ((Lh* + L(s)K (s)ds + Ko 3 L,») 21 — 2o
0 i=1
Therefore,
a n
D11 (1) — Draa(t)]|a < M/ ((Lh* + L(s))K(s)ds + Ko 3 Li) 21 — z2|a.
0 i=1
for any 1,25 € S(a), and I'; is Lipschitzian on S(a) with Lipschitz constant
a n
I M/ ((Lh* + L(s))K(s)ds + K, ZL)
0

i=1

Next, take bounded subset W C S(a) arbitrary. The hypothesis that U (, s) is equicontinuous
implies the equicontinuity of the set U(t, s) f(s, Ws + ys). In view of Lemma 2.1, Lemma 2.6 and
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H, (iii), we obtain that

(Pawle) = x( [ 060567, + )s)

<[00 s x(WGs-+0)+ats ) is

—00<0<0

t
< /0 n(s) sup x(W(r))ds

0<7<s

< xreli) | (s,

and hence

t
xpe(Taw) < xpe(W) / n(s)ds

<xreW) [ n(e)ds
0
for each bounded set W € PC([0, a]; X ), we get from (3.4),(3.5) and Lemma 2.1 that

xpc(IT'W) = xpc (F1W + FQW)
< xpe(L1W) + xpe(L'2W)
t
< (£ [ ao)ds)xpe()
0
< xpe(W).
The hypothesis Hg(b) implies that " is x — contraction. In view of Lemma 2.2, (Darbo fixed

point theorem), we conclude that I has at least one fixed point of I" in S(a). Let « be a fixed of I on
S(a), then z = x + y is a mild solution of (1.1)-(1.3), which completes the proof.

Theorem 3.2. Assume that the hypotheses H1, Ho, Hs, Hyq, Hs, Hg(a), Hg(c) and He(d) are
satisfied. Furthermore, we suppose

K, (th(M0 +Ma)+M> Cl+ /O L(s)ds + M /0 m(s)ds lim sup M) <1
=1

Then there exists a mild solution of (1.1)-(1.3).

Proof. Proceeding as in the proof of the Theorem 3.1, we infer that the map I" given by (3.1) is
continuous from S(a) into S(a). Furthermore, there exists 7 > 0 such that ['(B,) C B,, where

B, = {T € S(a): ||zl < r}. In fact, if we assume that the assertion is false, then for » > 0 there
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exists " € B and t" € I such that r < ||[T'z"(¢")||. This yields that
t
r < |[Fa" ()] < M/ (m()W (|25 +yorlls) + L(s)l[ws + ysrll5)ds
0

¢
+ Lpi (Mo + Ma)(J|a} + yer|]) + Ln2(Mo + Ma) + ]\f/ llg(s,0)|lds
0

+M Y (CHIag + yr ) + CF)

0<t; <t
< [ (W (Ko MIBO, ) + (KaMH + M)l + Kor)
0
+ L(s) (KaM|B(O, 9| + (KM H + Mool + Kar) ) ds

+ Ly (Mo + Ma)(K.MI|h(0, 9)| + (KaMH + M) |5 + Kar)

+ MY (CHEM|h(0. @) + (KoM + M) ¢llg + Kar) + C2)

i=1

+ Lpo (Mo + Ma) + M/ llg(s,0)||ds
0
which implies that
1<K, (th(AIO +Ma)+ MY CH+ / L(s)ds)
i=1 0

a W(K M| h(0, K,MH + M, K,
+M | m(s)ds lim sup( ( 70, )| + ( + M) ||¢llg + Kqr)

0 r—00

<Ko (Lin (Mo + Ma) Yol /0 " L(s)ds + M /0 “m(s)ds tim sup T,

, T—00 T
i=1

which is contradiction to our assumption.
By means of Lemma (2.3), as in the proof of Theorem 3.1, we conclude that (1.1)-(1.3) has a mild
solution.

4. EXAMPLE

Consider the model

0 2
(%[m(t,f) —/m T(O)u(t,o(t +0,£))d0)] = b(t,g)a%m(m)

0 0
+/ P(9)7‘(t,w(t+9,§))d9+/ Q0)s(t,z(t+0,£)do, te I, £ €0, 4.1

z(t,0) =a(t, ) =0, t €I, 4.2)
r(1.§) =wo(7,§), 7<0,0<E <7 (4.3)

Aaty6) = [

t.
’ vty — 8)x(s,§)ds, j=1,2,...,n 4.4)

where b(L, £) is a continuous function and is uniformly Holder continuous in ¢: T', P, () : (—o0, 0] —
R; u,7, 2 : [0,4+00) x R — R and zg : (—oo, 0] x [0, 7] — R are continuous functions.
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Let E = L%(]0,n],R) and define A(t) by A(t)w = b(t,&)w” with domain D(A) = {w € F :
w, w' are absolutely continuous w” € E, w(0) = w(w) = 0}. Then A(¢) generates an evolution
system U (¢, s) satisfying the assumptions (H1) and (H2) (see [17]).

For the phase space B3, we choose the well known space BUPC(R™, E): the space of uniformly
bounded continuous functions endowed with the norm ||¢[| = supy<q [0(8)] for ¢ € B. If we put
forp € BUPC(R™,E)and ¢ € [0, 7],

v(t)§ = 2(t,6), tel, E€0,7),
¢(6)(€) = .?’,‘0(9,5), —00 < 0 < 0? 5 € [O?ﬂ—}a

0

Wt 0)(€) = / T(0)u(t. () ()0, —0 <0< 0, & € [0.7],
0

F(t0)(E) = / P(6)r(t, 6(8)(€))d8, —o0 < 8 <0, £ € [0, 7],

0
ot 9)(€) = / QUL VO, —oc <0 <0, £ 0.7

0

Li(v) :/ vi(=s)(s,&)ds, j=1,2,..,n,

—0o0
Then, (4.1)-(4.4) takes the abstract neutral perturbed evolution form (1.1)-(1.3). To show the
existence of the mild solution to (4.1)-(4.4), we assume the following hypotheses:

(1) The functions x and s are Lipschitz with respect to its second argument, and constants lip(x)
and lip(s) respectively.
(2) There exist p € L*([0, +00),R*) and a nondecreasing continuous function
¥ : [0, +00) — (0, 00) such that |r (¢, u)| < p(t)¥(|z|), for ¢t € [0,00), u € R.
(3) T, P and Q are integrable on (—oo, 0].
By the Dominated Convergence Theorem, one can show that f is a continuous function from B to
E. Moreover the mapping h, g and ; are Lipschitz continuous in its second argument, in fact, we
have

0
9t 1) — 9t 2)] < Lip(s) / QO)|ddlr — vals 1,0 € B,

0
Ih(t, 1) — h(t, p2)| < My lip(a) / TO)d0)o1 — o), 1,2 € B,
o0

‘7](575)_7](573”SLz‘é_g‘a 66[0771—}7 S,EER.

On the other hand, for ¢ € B and £ € [0, 7], we have
0

If(t,) ()] S/ lp() P (0) |4 (|0 (0)(£)1)do.

—0oQ
Since the function is nondecreasing, it follows that

0
(6. 0)] < () / P(6)]d0([]). for p € B.

—0C
Proposition 4.1. Assume the above hypotheses and the condition Hg in Theorem 3.2 hold, v € B,

then there exists at least one mild solution to system (4.1)-(4.4).
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