Ultra Real-Time PCR을 활용한 Avian Influenza Virus Subtype의 조기진단법

Early Diagnostic Method of Avian Influenza Virus Subtype Using Ultra Real-Time PCR

  • 김상태 (이화여자대학교 생명약학부) ;
  • 김영균 (국민대학교 삼림대학 삼림생명공학과) ;
  • 김장수 (고려대학교 구로병원 진단검사의학과)
  • Kim, Sang-Tae (Divion of Biological and Phamaceutical, Ewha Womans University) ;
  • Kim, Young-Kyoon (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim, Jang-Su (Department of Laboratory Medicine, Korea University Guro Hospital)
  • 투고 : 2011.01.14
  • 심사 : 2011.01.26
  • 발행 : 2011.03.31

초록

조류 인플루엔자 바이러스(AIV) 아형을 ultra-time PCR법(UPCR)을 이용하여 초스피드로 진단할 수 있는 방법을 고안하였다. 표적 대상의 프라이머는 AIV H5N1 아형의 hemagglutinin(HA) 유전자 중 가장 상보성이 높은 133 bp의 부위를 선택하였고, 실험의 안전을 위하여 인공합성의 방법으로 제작하였다. 압타머와 결합한 molecular beacon 기반 Mini-Opticon Q-PCR 기기를 사용한 UPCR법으로, 총 UPCR 반응액의 양을 10 ${\mu}l$으로, UPCR과 용융온도 분석시간을 15분 이내로 매우 짧게 단축시켰다. 민감도 측정에서 최소의 주형인 5분자의 HA 유전자만으로 정확히 AIV의 특이적 133 bp를 합성하였다. UPCR로 디자인된 이 PCR은 AIV 아형의 진단에 적용될 수 있을 뿐 아니라, UPCR이 기반되는 진단을 이용하여 다른 병원체에도 널리 적용 될 수 있을 것으로 기대된다.

This ultra real-time PCR (UPCR) based diagnosis system for avian influenza A virus (AIV) subtype was designed. The target primer in this study was derived from H5N1 subtype-specific 133 bp partial gene of hemagglutinin (HA), and was synthesized by using PCR-based gene synthesis on the ground of safety. UPCR was operated by Mini-Opticon Q-PCR Quantitative Thermal Cycler using aptamer-based molecular beacon, total 10 ${\mu}l$ of reaction mixture with extraordinarily short time in each steps in PCR. The detection including UPCR and analysis of melting temperature was totally operated within 15 min. The AIV-specific 133 bp PCR product was correctly amplified until 5 molecules of HA gene as minimum of templates. This kind of PCR was drafted as UPCR in this study and it could be used to detect not only AIV subtype, but also other pathogens using UPCR-based diagnosis.

키워드

참고문헌

  1. Alexander, D.J. 1995. The epidemiology and control of avian influenza and Newcastle disease. J. Comp. Pathol. 112, 105-126. https://doi.org/10.1016/S0021-9975(05)80054-4
  2. Basuno, E., Y. Yusdja, and N. Ilham. 2010. Socio-economic impacts of avian influenza outbreaks on small-scale producers in Indonesia. Trans Emerg. Dis. 57, 7-10. https://doi.org/10.1111/j.1865-1682.2010.01121.x
  3. Ben, S.M., R. Meir, R. Haddas, E. Lapin, I. Shkoda, I. Raibstein, S. Perk, and I. Davidson. 2010. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J. Virol. Methods 168, 72-77. https://doi.org/10.1016/j.jviromet.2010.04.019
  4. Boehm, K.M. 2010. Seasonal and avian influenza knowledge base of attending physicians in a community-based hospital: a survey-based study. J. Am. Osteopath. Assoc. 110, 285-289.
  5. Bosch, F.X., M. Orlich, H.D. Klenk, and R. Rott. 1979. The structure of the hemagglutinin. A determinant for the pathogenicity of influenza viruses. Virology 95, 197-207. https://doi.org/10.1016/0042-6822(79)90414-8
  6. Butz, K., C. Denk, B. Fitscher, I. Crnkovic-Mertens, A. Ullmann, C.H. Schroder, and F. Hoppe-Seyler. 2001. Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 45, 6579-6586.
  7. Castrucci, M.R. and Y. Kawaoka. 1993. Biologic importance of neuraminidase stalk length in influenza A virus. J. Virol. 67, 759-764.
  8. Claas, E.C., J.A.D. Osterhaus, R. Van Beck, J.C. de Jong, G.F. Rimmelzwaan, D.A. Senne, S. Krauss, K.F. Shortridge, and R.G. Webster. 1998. Human influenza A (H5N1) virus related to highly pathogenic avian influenza virus. Lancet 351, 472-477. https://doi.org/10.1016/S0140-6736(97)11212-0
  9. Criado-Fornelio, A. 2007. A review of nucleic-acid-based diagnostic tests for Babesia and Theileria, with emphasis on bovine piroplasms. Parassitologia 49, 39-44.
  10. Deyde, V.M., R. Sampath, R.J. Garten, P.J. Blair, C.A. Myers, C. Massire, H. Matthews, P. Svoboda, M.S. Reed, J. Pohl, and et al. 2010. Genomic signature-based identification of influenza A viruses using RT-PCR/electro-spray ionization mass spectrometry (ESI-MS) technology. PLoS One 12, in press.
  11. Edward, C.H., C.V. Johann, K.R. Julia, and P.D. Gog. 2010. Genome packaging in influenza A virus. J. Gen. Virol. 91, 313-328. https://doi.org/10.1099/vir.0.017608-0
  12. Fader, R.C. 2005. Comparison of the Binax NOW Flu A enzyme immunochromatogra-phic assay and R-Mix shell vial culture for the 2003-2004 influenza season. J. Clin. Microbiol. 43, 6133- 6135. https://doi.org/10.1128/JCM.43.12.6133-6135.2005
  13. Fauci, A.S. 2006. Emerging and re-emerging infectious diseases: Influenza as a prototype of the host-pathogen balancing act. Cell. 124, 665-670. https://doi.org/10.1016/j.cell.2006.02.010
  14. Fleming, D.M., P. Chakraverty, C. Sadler, and P. Litton 1995. Combined clinical and virological surveillance of influenza in winters of 1992 and 1993-4. B.M.J. 29, 290-291.
  15. Gopinath, S., C. Sakamaki, Y. Kawasaki, and K. Kumar. 2006. An efficient RNA aptamer against human influenza B virus hemagglutinin. J. Biochem. 139, 837-846. https://doi.org/10.1093/jb/mvj095
  16. Guan, M.K., L.C. Hsueh, Y.K. Liang, T.J. Liang, L.C.J. Chulu, H.M. Liao, T.J. Chang, and H.J. Liu. 2006. Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus. J. Virol. Methods 133, 6-13. https://doi.org/10.1016/j.jviromet.2005.09.011
  17. Guan, Y., D. Vijaykrishna, J. Bahl, H. Zhum, J. Wang, and G.J. Smith. 2010. The emergence of pandemic influenza viruses. Protein Cell. 1, 9-13. https://doi.org/10.1007/s13238-010-0008-z
  18. Hilleman, M.R. 2003. Critical overview and outlook: pathogenesis, prevention, and treatment of hepatitis and hepatocarcinoma caused by hepatitis B virus. Vaccine 32, 4626-4649.
  19. Horimoto, T. and Y. Kawaoka. 2001. Pandemic threat posed by avian influenza A viruses. Clin. Microbiol. Rev. 14, 129-149. https://doi.org/10.1128/CMR.14.1.129-149.2001
  20. Ito, T., Y. Suzuki, L. Mitnaul, A. Vines, H. Kida, and Y. Kawaoka. 1997. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227, 493-499. https://doi.org/10.1006/viro.1996.8323
  21. Jeon, S.H., B. Kayhan, T. Ben-Yedidia, and R. Arnon. 2004. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J. Biol. Chem. 279, 48410-48419. https://doi.org/10.1074/jbc.M409059200
  22. Kim, E.H., D.W. Lee, S.H. Han, S.H. Kwon, and B. Yoon. 2007. Rapid detection method of avian influenza subtype H5N1 using quick real-time PCR. Kor. J. Microbiol. 43, 23-30.
  23. Knipe, D.M. and P.M. Howley. 2007. Field Virology, fifth ed., Lippincott Williams & Wilkins Immunol.
  24. Kuiken, T.V., M. Pantin-Jackwood, and D.E. Swayne. 2010. Comparative pathology of select agent influenza a virus infections. Vet. Pathol. 47, 893-914. https://doi.org/10.1177/0300985810378651
  25. Leonardi, G.P. 2010. Rapid identification of 2009 H1N1 influenza A virus using fluorescent antibody methods. Am. J. Clin. Pathol. 134, 910-914. https://doi.org/10.1309/AJCPR7LTR5UUUYDT
  26. Li, Z., C. Ma, Z. Liu, and W. He. 2010. Serologic crossreactivity among humans and birds infected with highly pathogenic avian influenza A subtype H5N1 viruses in China. Immunol. Lett. in press.
  27. Rachel, B.S., M.C. Donald, J.C. Corey, G. Elodie, M.R. Ted, and V.B. Panayiotis. 2009. Genome. Biol. 10, R18. https://doi.org/10.1186/gb-2009-10-2-r18
  28. Rachel, M., P. Guoyan, Z. Wandy, L. Beatty, K.A. Mihindukulasuriya, A.P.A. Travassos da, R. Vsevolod, L.P. Robert, B. Tesh, H.W. Virgin, and D. Wang. 2009. Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae. J. Virol. 83, 11599-11606. https://doi.org/10.1128/JVI.00677-09
  29. Verhoeff, J.J., L.J. Stalpers, A. Claes, K.E. Hovinga, G.D. Musters, V.W. Peter, D.J. Richel, W.P.J. Leenders, and W.R. van Furth. 2009. Tumour control by whole brain irradiation of anti-VEGF-treated mice bearing intracerebral glioma. Eur. J. Cancer. 45, 3074-3080. https://doi.org/10.1016/j.ejca.2009.08.004