DOI QR코드

DOI QR Code

Study on Mercury Contamination in Multimedia Environment in Lake So-Yang

소양호 다중매체 내 수은오염실태 조사

  • Park, Sang-Young (Department of Environment Science, Kangwon National University) ;
  • Yoo, Seong (Department of Environment Science, Kangwon National University) ;
  • Shin, Hyung-Cheol (Department of Environment Science, Kangwon National University) ;
  • Kim, Seong-Rak (Department of Environment Science, Kangwon National University) ;
  • Kim, Pyung-Rae (Department of Environment Science, Kangwon National University) ;
  • Ahn, Myung-Chan (Department of Environment Science, Kangwon National University) ;
  • Han, Young-Ji (Department of Environment Science, Kangwon National University)
  • 박상영 (강원대학교 환경과학과) ;
  • 유성 (강원대학교 환경과학과) ;
  • 신형철 (강원대학교 환경과학과) ;
  • 김성락 (강원대학교 환경과학과) ;
  • 김평래 (강원대학교 환경과학과) ;
  • 안명찬 (강원대학교 환경과학과) ;
  • 한영지 (강원대학교 환경과학과)
  • Received : 2010.05.25
  • Accepted : 2011.03.30
  • Published : 2011.03.31

Abstract

In this study the seasonal and spatial pattern of mercury (Hg) concentrations in multimedia environments were investigated in Lake So-Yang. Total mercury (TM) in water column greatly enhanced as turbidity and particulate organic carbon (POC) increased due to the severe runoff, suggesting that most of Hg existed as particulate Hg in Lake Soyang. We also collected 22 species of fish in Lake Soyang and Han River, and the average total mercury in fish was 0.073 ppm, lower than both Korean (0.5 ppm) and EPA criteria (0.3 ppm). However when considering the amount of fish intake for Korean the Hg criterion in fish must be more stringent than current value, and the advisory for fish consumption should be made. Hg in fish considerably varied with sampling sites, having the highest in the upper region (Yang-gu) and the lowest in downstream (Han River). This spatial variation was possibly derived by "bloom dilution" associated with high phosphorus loading or elevated DOC concentrations, or both. Total mercury in sediment varied from 69.9 to $98.3{\mu}g/kg$, which was relatively lower than those measured in Voyageurs National Park in Minnesota in USA ($102{\sim}364{\mu}g/kg$).

본 연구는 소양호를 대상으로 장기간 동안 다매체 내 수은 농도 분포를 조사하였으며 소양호 총수은(TM; total mercury) 농도는 $1.17{\pm}1.09ng/L$ 나타났다. 표층수 총 수은 농도를 보면 시간적 및 공간적 변이에 대한 통계적 유의성을 찾아볼 수 없었으나, 탁도 및 입자성 유기탄소(particulate organic carbon; POC)의 농도와 뚜렷한 양의 상관성(P-value<0.01)이 있는 것으로 관측되었다. 또한 소양호의 경우 수은 유입원이 선행연구에서 언급된 대기 침적보다는 장마철 runoff로 인한 유입이 더 중요하다는 것을 나타낸다. 어류 내 수은은 한강과 소양호에서 총 22종의 어류를 채취하였으며, 어류 내 평균 총수은 농도는 0.073 ppm(습중량)으로 나타나, 우리나라의 기준치(0.5 ppm) 및 미국 EPA의 기준치(0.3 ppm)에 비해 낮은 농도를 보였다. 그러나 미국 EPA의 RfD(reference dose)를 바탕으로 본 연구에서 계산된 적정 기준치인 0.07 ppm을 상회하는 어류가 전체의 42%를 차지해 우리나라만의 어류섭취 관리대책이 필요하다. 어류를 채취한 세 지점, 한강, 신이리, 양구는 동일한 종에서 뚜렷하게 다른 농도 분포를 보였는데, 상류일수록 더 높은 농도를 나타냈다. 이는 호수의 부영양화 차이로 인한 지점별 어류 성장 속도의 차이가 원인인 것으로 생각된다. 소양호 저서퇴적물의 수은 농도 분포는 $69.9{\sim}98.3{\mu}g/kg$으로 나타나 미국 미네소타 주의 Voyageurs National Park에서의 연구 결과($102{\sim}364{\mu}g/kg$)보다 약간 낮게 나타났다.

Keywords

References

  1. Vette, A. F., Landis, M. S. and Keeler, G. J., "Deposition and emission of gaseous mercury to and from lake michigan during the lake michigan mass balance study," Environ. Sci. Technol., 36, 4525-4532(2002). https://doi.org/10.1021/es0112184
  2. Lynam, M. M. and Keeler, G. J., "Automated speciated mercury measurements in Michigan," Environ. Sci. Technol., 39, 9253-9262(2005). https://doi.org/10.1021/es040458r
  3. Park, J. S., Oh, S., Shin, N. Y., Kim, M. K., Yi, S. M. and Zoh, K. D., "Seasonal variation in dissolved gaseous mercury and total mercury concentrations in Juam Reservoir, Korea," Environ. Pollut., 154, 12-20(2008). https://doi.org/10.1016/j.envpol.2007.12.002
  4. Fleming, E. J., Mack, E. E., Green, P. G. and Nelson, D. C., "Mercury methylation from Unexpected Sources: Molybdate-Inhibited Freshwater sediments and an Iron-Reducing Bacterium," Appl, Environ. Microbiol., 72, 4457-464(2006).
  5. U.S. EPA., "Mercury Update: Impact in Fish Advisories. U.S. Environmental Protection Agency, Office of Water," 4305, EPA-823-F-01-011(2001).
  6. Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C. and Munson, R. K., "Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States," Bio. Sci., 57, 17-28(2007).
  7. Meili, M., "The coupling of mercury and organic matter in the biogeochchemical cycle towards a mechanistic model for the boreal forest zone," Water Air Soil Pollut., 56, 333-347 (1991). https://doi.org/10.1007/BF00342281
  8. Ikingura, J. R. and Akagi, H., "Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania," The Science of the total Environment, 304(1-3), 355-68(2003). https://doi.org/10.1016/S0048-9697(02)00581-8
  9. Mlean, N., Larned, S. T., Nikora, V., and Kutter, V., "Mercury in lakes and lake fishes on a conservation-industry gradient in Brazil," Chemosphere, 60, 226-236(2005). https://doi.org/10.1016/j.chemosphere.2004.12.047
  10. Kamman, N. C., Lorey, P. M., Driscoll, C. T., Estabrook, R., Major, A., Pientka, B. and Glassford, E., "Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using ageographically randomized design," Environ. Toxicol. Chem., 23, 1172-1186(2004). https://doi.org/10.1897/03-170
  11. Essington, T. E. and Houser, J. N., "The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perch," Transactions of the American Fisheries Society, 132, 57-68(2003). https://doi.org/10.1577/1548-8659(2003)132<0057:TEOWLN>2.0.CO;2
  12. Charles, T. Driscoll., Young-ji, Han., Celia Y. Chen., David C. Evers., Kathleen Fallon Lambert., Thomas M. Holsen., Neil C. Kamman., And Ronald K. Munson "Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States," Bioscience, 57(1), 17-29(2007). https://doi.org/10.1641/B570106
  13. 정종수, 심상규, "국내 수은 연구 동향 및 관리 현황," 한국대기환경학회지, 25(2), 99-107(2009).
  14. 김희연, 정도영, 노유섭, 오금순, 박성수, 서정혁, 이은주, 이윤동, 최우정,엄 지윤, 송민수, 이종옥, 우건조, 경인지방 식품안정청 시험분석팀, 식품의약품청 식품평가부, "어류 중 메틸수은 분석법 확립 및 모니터링," 한국식품과학회지, 882-888(2005).
  15. U.S. EPA Method 1631, Revision E., "Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry," U.S. Environmental Protection Agency, Office of Water, 4303. EPA-821-R-02-019(2002).
  16. Chio, K. S., Kim, B. C. and Lee, U. H., "Characteristics of dissolved organic carbon in three layers of a deep reservoir, Lake Soyang, Korea," Int. Rev. Hydrobiol., 86(1), 63-76 (2001). https://doi.org/10.1002/1522-2632(200101)86:1<63::AID-IROH63>3.0.CO;2-X
  17. Kim, B.-C., Chol, K.-S. Kim, C.-G., Lee, U. H. and Kim, Y.-H., "Effects of the summer monsoon on the distribution and loading of organic cabon in adeep reservoir, Lake Soyang, Korea," Elsevier Sci., 34(14), 3495-3504(2000).
  18. Kim, Y.-H. and Kim, B.-C., "Application of a 2-dimensionalwater quality model (CE-QUAL-W2) to the turbidity interflow in a deep reservoir (Lake Soyang, Korea)," Lake and Reservoir Management, 22(3), 213-222(2006). https://doi.org/10.1080/07438140609353898
  19. Amyot, M., Mierle, G., Lean, D. R. S. and McQueen, D. J., "Sunlight-induced formation of dissolved gaseous mercury in lake waters," Environ. Sci. Technol., 28, 2366-2371(1994). https://doi.org/10.1021/es00062a022
  20. Scherbatskoy, T., Shanley, J. B. and Keeler, G. L., "Factors controlling mercury transport in an upland forested catchment," Water, Air, Soil Pollut., 105, 427-438(1998). https://doi.org/10.1023/A:1005053509133
  21. O'Driscoll, N. J., Sicilian, S. D. and Lean, D. R. D., "Continuous analysis of dissolved gaseous mercury in freshwater lakes," Sci. Total Environ., 304, 285-294(2003). https://doi.org/10.1016/S0048-9697(02)00575-2
  22. O'Driscoll, N. J, Poissant, L. C., Ridal, J. and Lean, D. R. S., "Continuous analysis of dissolved gaseous mercury and mercury volatilizatioin in the upper St. Lawrence river: exploring temporal relationships and UV attenuation," Environ. Sci. Technol., 41, 5342-5348(2007). https://doi.org/10.1021/es070147r
  23. Dill, C., Kuiken, T., Zhang, H. and Ensor, M., "Diurnal variation of dissolved gaseous mercury (DGM) levels in a southern reservoir lake (Tennessee, USA) in relation to solar radiation," Sci. Total Environ., 357, 176-193(2006). https://doi.org/10.1016/j.scitotenv.2005.04.011
  24. Zhang, H., Dill, C., Kuiken, T., Ensor, M. and Crocker, W. C., "Change of dissolved gaseous mercury concentration in a southern reservoir lake (Tennessee) following seasonal variation of solar radiation," Environ. Sci. Technol., 40, 2114-2119(2006). https://doi.org/10.1021/es0513990
  25. Siciliano, S. D., O'Driscoll, N. J. and Lean, D. R. S., "Microbial reduction and oxidation of mercury in freshwater lakes," Environ. Sci. Technol., 36, 3064-3068(2002). https://doi.org/10.1021/es010774v
  26. Wiatrowski, H. A., Ward, P. M. and Barkay, T., "Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria," Environ. Sci. Technol., 40, 6690-6696(2006). https://doi.org/10.1021/es061046g
  27. Landis M. S. and Keeler G. J., "Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study," Environ. Sci. Technol., 36, 4518-4524(2002). https://doi.org/10.1021/es011217b
  28. Han, Y. J., Kim, T. S. and Kim, H. K., "Ionic constiuents and source analysis of PM2.5 in three Korean cities," Atmospheric Environ., 42, 4735-4746(2008). https://doi.org/10.1016/j.atmosenv.2008.01.047
  29. Orihel, D. M., Paterson, M. J., Bodaly, R. A. and Hintelmann H., "Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota," Environ. Sci. Technol., 41, 4952-4958(2007). https://doi.org/10.1021/es063061r
  30. 김성연, 정문호, 손부순, 양원호, 최경호 "서울시 일부 지역의 대기 중 미세먼지에 관한 연구," 한국환경보건학회지, 31(4), 301-208(2005).
  31. 김용표 "서울의 미세먼지에 의한 대기오염," 한국대기환경학회지, 22(5), 535-553(2006).
  32. 전진희, 한영지 "춘천시 $PM_{2.5}$의 질량농도 및 이온성분 농도의 특성에 관한 연구," 한국대기환경학회지, 24(6) 682-692(2008).
  33. Wiener, J. G. and Knights, B. C., "Mercury in Soils, Lakes, and Fish in Voyageurs National Park (Minnesota): Importance of Atmospheric Deposition and Ecosystem Factors," Environ. Sci. Technol., 40, 6261-6268(2006). https://doi.org/10.1021/es060822h
  34. UNEP, "Global mercury assessment, Issued by UNEP Chemicals Geneva, Switzerland,"(2002).
  35. Mason, R. P., Laporte, J. M. and Andres, S., "Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish," Arch. Environ. Contam. Toxicol., 38, 283-297 (2000). https://doi.org/10.1007/s002449910038
  36. Oh, S. H., Kim, M. K., Yi, S. M. and Zoh, K. D., "Distributions of total mercury and methylmercury in surface sediments and fishes in Lake Shihwa, Korea," Sci. Total Environ., 408, 1059-1068(2010). https://doi.org/10.1016/j.scitotenv.2009.11.007
  37. Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H. and Scheuhammer, A. M., "Ecotoxicology of mercury. In: Handbook of Ecotoxicology (2nd ed). Hoffman, D.J., Rattner, B.A., Burton, G.A. and Cairns, J. (eds)," CRC Press, Boca Raton, Florida, pp. 409-463(2003).
  38. Howard A. Simonin., Jefferey J. Loukmas., Lawrence C. Skinner., Karen M. Roy., "Lake variability: Key factors controlling mercury concentrations in New York State Fish," Environ. Pollut., 154, 107-115(2008). https://doi.org/10.1016/j.envpol.2007.12.032
  39. Pak, K. R. and R. Bartha., "Mercury methylation and demethylation inanoxic lake sediments and by strictly anaerobic bacteria," Appl. Environ. Microbiol., 64, 1013-1017 (1998).
  40. John E. Gray., Mark E. Hines., "Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA," Chem. Geol., 258, 157-167(2009). https://doi.org/10.1016/j.chemgeo.2008.09.023
  41. Adam R. Schwindt., John W. Fournie., Dixon H. Landers., Carl B. Schreck and Michael L. Kent., "Mercury Concentrations in Salmonids from Western U.S National Parks and Relationships With Age and Macrophage Aggregates," Environ. Sci. Technol., 42(8), 1365-1370(2008). https://doi.org/10.1021/es702337m
  42. Kim, B. C. and Kim, Y. H., "Phosphorus cycle in a deep reservoir in Asian monsoon area and the modeling with a 2-D hydrodynamic water quality model (CE-QUAL-W2)," Korean J. Limnol., 37(2), 205-212(2004).

Cited by

  1. Spatial and temporal variation of total mercury and methylmercury in lacustrine wetland in Korea vol.22, pp.9, 2015, https://doi.org/10.1007/s11356-015-4284-2