DOI QR코드

DOI QR Code

Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application

다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가

  • Kim, Deuk-Ju (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Hwang, Hae-Young (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Kim, Se-Jong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Leem, Tae-Hoon (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 김득주 (경상대학교 나노신소재공학과, 아이큐브 사업단) ;
  • 황해영 (경상대학교 나노신소재공학과, 아이큐브 사업단) ;
  • 김세종 (경상대학교 나노신소재공학과, 아이큐브 사업단) ;
  • 홍영택 (한국화학연구원 에너지소재연구센터) ;
  • 김형준 (한국과학기술연구원 연료전지연구센터) ;
  • 임태훈 (한국과학기술연구원 연료전지연구센터) ;
  • 남상용 (경상대학교 나노신소재공학과, 아이큐브 사업단)
  • Received : 2011.01.31
  • Accepted : 2011.02.18
  • Published : 2011.02.28

Abstract

The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

Keywords

References

  1. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Evelopment and performance characterization of new electrocatalysts for PEMFC", Journal of Power Sources, Vol. 106, No. 1, 2002, p. 206. https://doi.org/10.1016/S0378-7753(01)01040-0
  2. A. Heinzel, and V. M. Barragan, "A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells", Journal of Power Sources, Vol. 84, No. 1, 1999, p. 70. https://doi.org/10.1016/S0378-7753(99)00302-X
  3. S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh, "Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes", J. Electrochem. Soc., Vol. 149, No. 12, 2002, p. A1556. https://doi.org/10.1149/1.1517281
  4. O. Savadogo, "Emerging membranes for electrochemical systems:(I) Solid polymer membranes for fuel cell systems", J. New. Mater. Electrochem. Syst. Vol. 1, No. 1, 1998, p. 47.
  5. C. W. Lin, R. Thangamuthu, C. J. Yang, "Protonconducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications", J. Membr. Sci. Vol. 253, No. 1, 2005, p. 23. https://doi.org/10.1016/j.memsci.2004.12.021
  6. V.S. Silva, B. Ruffmann, S. Vetter, A. Mendes, L.M. Madeira, S.P. Nunes, "Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures", Journal of Power Sources, Vol. 145, No. 2, 2005, p. 205.
  7. F. Lufrano, V. Baglio, P. Staiti, A.S. Arico, V. Antonucci, "Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells", Desalination, Vol. 199, No. 1, 2006, p. 283. https://doi.org/10.1016/j.desal.2006.03.069
  8. Z. Gaowen, Z. Zhentao, "Organic/inorganic composite membranes for application in DMFC", J. Membr. Sci., Vol. 261, No. 1, 2005, p. 107. https://doi.org/10.1016/j.memsci.2005.03.036
  9. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin and J. S. Kim, "Preparation and performance of a $Nafion^{\circledR}$/montmorillonite nanocomposite membrane for direct methanol fuel cell", Journal of Power Sources Vol. 118, No. 1, 2003, p. 205. https://doi.org/10.1016/S0378-7753(03)00095-8
  10. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, Y. M. Lee, "Sulfonated poly (arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., Vol. 303, No.1, 2007, p. 258. https://doi.org/10.1016/j.memsci.2007.07.026
  11. T. Uma and M. Nogami, "Structural and Transport Properties of Mixed Phosphotungstic Acid/Phosphomolybdic Acid/$SiO_{2}$ Glass Membranes for $H_{2}/O_{2}$ Fuel Cells", Chem. Mater. Vol 19, No. 15, 2007, p. 3604. https://doi.org/10.1021/cm070567f
  12. F. N. Cayan, M. Zhi, S. R. Pakalapati, I. Celik, N. Wu and R. Gemmen, "Effects of coal syngas impurities on anodes of solid oxide fuel cells", Journal of Power Sources, Vol. 185, No. 2, 2008, p. 32. https://doi.org/10.1016/j.jpowsour.2008.07.004
  13. 임영돈, 서동완, 이순호, M. M. Islam, 강다립, 김환기, "고분자 전해질 막 연료전지를 위한 Bisphenol-TP를 포함한 Poly(ether sulfone)s 고분자 막의 합성과 특성, 한국수소 및 신에너지 학회 논문집, Vol. 21, No. 4, 2010, p. 307.
  14. T. Inoue, T. Uma and M. Nogami, "Performance of H2/O2 fuel cell using membrane electrolyte of phosphotungstic acid-modified 3-glycidoxypropyltrimethoxysilanes", J. Membr. Sci., Vol. 323, No. 1, 2008, p. 148. https://doi.org/10.1016/j.memsci.2008.06.030
  15. M. Zanetti, G. Camino, P. Reichert, and R. Miilhaupt, "Thermal Behaviour of Poly(propylene) Layered Silicate Nanocomposites", Macromol. Rapid Commun., Vol. 22, No. 3, 2001, p. 176. https://doi.org/10.1002/1521-3927(200102)22:3<176::AID-MARC176>3.0.CO;2-C
  16. R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, "Sulfonated montmorillonite/ sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs)", J. Membr. Sci., Vol. 323, No. 2, 2008, p. 337.
  17. J. R. Salgado, "Study of basic biopolymer as proton membrane for fuel cell systems", Electrochim. Acta, Vol.52, No. 11, 2007, p. 3766. https://doi.org/10.1016/j.electacta.2006.10.051
  18. T. Tezuka, K. Tadanaga, A. Hayashi, and M. Tatsumisago, "Inorganic−Organic Hybrid Membranes with Anhydrous Proton Conduction Prepared from 3-Aminopropyltriethoxysilane and Sulfuric Acid by the Sol−Gel Method", J. Am. Chem. Soc., Vol. 28, No. 51, 2006, p. 16470.
  19. Tiezhu Fu, Zhiming Cui, Shuangling Zhong, Yuhua Shi, Chengji Zhao, Gang Zhang, Ke Shao, Hui Na and Wei Xing, "Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells", Journal of Power Sources, Vol. 185, No. 1, 2008, p. 32. https://doi.org/10.1016/j.jpowsour.2008.07.004