DOI QR코드

DOI QR Code

The Study of Capacitive Deionization Technology by the Analysis of Patents and Papers

특허 및 논문 분석을 통한 축전식 탈염(CDI) 기술 연구

  • Published : 2011.12.01

Abstract

Capacitive deionization(CDI) is an ion removal technology that employs the basic electrochemical principle of absorbing ions in high surface area electrode. CDI technology reduce power consumption because it operates at lower electrode potential(about 1~2 V). Also, it is an environmentally friendly technology because no acid, base, or salts are required to generate the surface. In this study, we searched the patents and papers to investigate the trend of CDI technologies. Database was collected from WIPS and Scopus site and was investigated according to electrode, module and application technology of CDI. The technology trend of CDI was analyzed based on patent application year, countries, main applications and technologies.

축전식 탈염(CDI)은 높은 비표면적을 갖는 전극에 전기화학적 원리로 이온을 흡착하여 제거하는 기술이다. CDI 기술은 낮은 전위에서 작동하기 때문에 에너지 소비가 작고, 전극을 재생할 때 산, 염기 혹은 염을 사용하지 않기 때문에 환경친화적인 기술이다. 본 연구에서 우리는 CDI 기술의 동향을 알아보기 위해 특허와 논문을 조사했다. 데이터베이스는 WIPS와 Scopus를 사용하여 얻었으며 전극기술, 모듈기술 및 응용기술에 따라 조사되었다. CDI의 기술 동향은 연도별, 국가별, 출원인별, 기술별로 조사되었다.

Keywords

References

  1. Shin, C. H. and Johnson, R., "Development and Module Design of a Novel Membrane Process for the Removal of Chlorine and Its Associated Forms from Wastewater," J. Ind. Eng. Chem. 15, 613-617(2009). https://doi.org/10.1016/j.jiec.2009.09.030
  2. Lee, J. Y., Kwon, T. S., Baek, K. and Yang, J. W., "Adsorption Characteristics of Metal Ions by $CO_{2}$-fixing Chlorella sp. HA-1," J. Ind. Eng. Chem. 15, 354-358(2009). https://doi.org/10.1016/j.jiec.2008.12.007
  3. Helfferich, F., "Ion Exchange," Dover Publications, Inc., New York (1992).
  4. Younos, T., "Emerging Threats to Drinking Water Quality," Renewable Resources Journal, 23(2), 6-12(2005).
  5. Mulder, M., "Basic Principles of Membrane Technology," Kluwer Academic Publishers, Boston(1996).
  6. Strathmann, H., Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam(2004).
  7. Korea patent KR0442773, "Desalination System and Regeneration Method by Electrosorption," (2004).
  8. Han, Y., Quan, X., Chen, S., Wang, S. and Zhang, Y., "Electrochemical Enhancement of Adsorption Capacity of Activated Carbon Fibers and Their Surface Physicochemical Characterizations," Electrochim Acta, 52, 3075-3081(2007). https://doi.org/10.1016/j.electacta.2006.09.059
  9. Koresh, J. and Soffer, A., "Double Layer Capacitance and Charging Rate of Ultramicroporous Carbon Electrodes," J. Electrochem. Soc., 124, 1379-1385(1977). https://doi.org/10.1149/1.2133657
  10. Mitani, S., Lee, S. I., Yoon, S. H., Korai, Y. and Mochida, I., "Activation of Raw Pitch Coke with Alkali Hydroxide to Prepare High Performance Carbon for Electric Double Layer Capacitor," J. Power Sources, 133(2), 298-301(2004) https://doi.org/10.1016/j.jpowsour.2004.01.047
  11. Shiraisgi, S., Kurihara, H., Shi, L., Nakayama, T. and Oya, A., "Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method I. Nickel- Loaded Activated Carbon Fibers in Propylene Carbonate Solution Containing $LiClO_{4}$ Salt," J. Electrochem. Soc., 149(7), 855-861 (2002). https://doi.org/10.1149/1.1481525
  12. Kim, Y. J., Horie, Y., Matsuzawa, Y., Ozaki, S., Endo, M. and Mildred, S. D., "Structural Features Necessary to Obtain a High Specific Capacitance in Electric Double Layer Capacitors," Carbon, 42, 2423-2432(2004). https://doi.org/10.1016/j.carbon.2004.04.039
  13. Yang, K. L., Yiacoumi, S. and Tsouris, C., "Electrosorption Capacitance of Nanostructured Carbon Aerogel Obtained by Cyclic Voltammetry", J. Electroanalytical Chem., 540, 159-167(2003). https://doi.org/10.1016/S0022-0728(02)01308-6
  14. Welgemoed, T. J. and Schutte, C. F., "Capacitive Deionization Technology (TM): An alternative desalination solution," Desalination, 183, 327-340(2005). https://doi.org/10.1016/j.desal.2005.02.054
  15. Park, K. K., Lee, J. B., Park, P. Y., Yoon, S. W., Moon, J. S., Eum, H. M. and Lee, C. W., "Development of a Carbon Sheet Electrode for Electrosorption Desalination," Desalination, 206, 86-91 (2007). https://doi.org/10.1016/j.desal.2006.04.051
  16. Jung, H. H., Hwang, S. W., Hyun, S. H., Lee, K. H. and Kim, G. T., "Capacitive Deionization Characteristics of Nanostructured Carbon Aerogel Electrodes Synthesized Via Ambient Drying," Desalination, 216, 377-385(2007). https://doi.org/10.1016/j.desal.2006.11.023
  17. United States patent US7505250, "Carbon-porous Media Composite Electrode and Preparation Method Thereof," (2009).
  18. United States patent US6225733, "Supercapacitor and a Method of Manufacturing Such a Supercapacitor," (2001).
  19. United States patent US6697249, "Supercapacitor and a Method of Manufacturing Such a Supercapacitor," (2004).
  20. Korea patent KR0008622, "Electrode for Capacitive Deionization, Manufacturing," (2009).
  21. United States patent US6761809, "Alternating-polarity Operation for Complete Regeneration of Electrochemical Deionization System," (2004).
  22. United States patent US5425858, "Method and Apparatus for Capacitive Deionization, Electrochemical Purification, and Regeneration of Electrodes," (1995).
  23. United States patent US7138042, "Alternating-polarity Operation for Complete Regeneration of Electrochemical Deionization System," (2006).

Cited by

  1. Analysis of Zeolite Membrane Using Patent Information vol.18, pp.3, 2012, https://doi.org/10.7464/ksct.2012.18.3.307
  2. Analysis of Forward Osmosis Membrane Technology Using International Patent Classification vol.50, pp.5, 2012, https://doi.org/10.9713/kcer.2012.50.5.900
  3. Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.269
  4. 효율적인 중금속 이온 제거를 위한 킬레이팅 수지를 포함한 양이온 교환막의 개발 및 응용 vol.27, pp.2, 2011, https://doi.org/10.14579/membrane_journal.2017.27.2.129
  5. Nafion과 Aminated Polyphenylene Oxide (APPO)를 적용한 막 축전식 탈염 공정의 성능 연구 vol.30, pp.5, 2020, https://doi.org/10.14579/membrane_journal.2020.30.5.350