DOI QR코드

DOI QR Code

$AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$

  • 김성민 (고려대학교 화공생명공학과) ;
  • 이준엽 (고려대학교 화공생명공학과) ;
  • 조인호 (SK에너지 기술원) ;
  • 이대원 (고려대학교 청정화공시스템연구소) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Kim, Seongmin (Department of Chemical & Biological Engineering, Korea University) ;
  • Lee, Joon Yeob (Department of Chemical & Biological Engineering, Korea University) ;
  • Cho, In-Ho (Corporate R&D Center, SK Energy Instituted of Technology) ;
  • Lee, Dae-Won (Research Institute of Clean Chemical Engineering Systems, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical & Biological Engineering, Korea University)
  • 발행 : 2011.10.01

초록

Mn이 치환된 헥사알루미네이트 촉매인 $LaMnAl_{11}O_{19}$, $BaMnAl_{11}O_{19}$, $SrMnAl_{11}O_{19}$$(NH_4)_2CO_3$ 공침법을 이용하여, $1,200^{\circ}C$ 5시간 소성을 통해 제조하였다. X-선 회절, 질소흡착을 통해 촉매의 결정구조와 비표면적을 분석한 결과, 결정 격자 내 거울면에 La이 존재하는 $LaMnAl_{11}O_{19}$$BaMnAl_{11}O_{19}$$SrMnAl_{11}O_{19}$보다 우수한 헥사알루미네이트 결정 구조를 가지는 동시에 13 $m^2/g$의 높은 비표면적을 가지고 있었다. 또한 SEM 분석을 통해 $LaMnAl_{11}O_{19}$이 특유의 판상구조가 잘 발달함을 확인하였다. 메탄 연소 활성은 다음과 같은 차례로 증가하였고: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$. 메탄 연소 활성은 비표면적에 의존하였다. $LaMnAl_{11}O_{19}$에 60 wt%의 $CeO_2$를 첨가하고 $700^{\circ}C$의 저온에서 소성한 경우 $700^{\circ}C$의 저온에서 100% 전환율에 도달함으로써 ceria 첨가에 의한 메탄 연소 개선 효과를 확인할 수 있었으며, 이 촉매가 저온 및 중온 영역의 메탄 연소 촉매로 활용될 수 있음을 확인하였다. 그러나, 이 촉매의 경우 $1,200^{\circ}C$의 고온에서 5시간 소성한 후에는 ceria입자 크기의 증가로 인해 메탄의 연소 활성 개선 효과를 잃게됨으로 고온용 연소 촉매로서의 사용은 한계가 있음을 확인하였다.

Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.

키워드

참고문헌

  1. Prasad, R., Kennedy, L. A. and Ruckenstein, E., "Catalytic Combustion," Catal. Rev. Sci. Eng., 26(1), 1-58(1984). https://doi.org/10.1080/01614948408078059
  2. Groppi, G., Belloli, A., Tronconi, E. and Forzatti, P., "Catalytic Combustion of $CO-H_{2}$ on Manganese-substituted Hexaaluminates," Catal. Today, 29(1-4), 403-407(1996). https://doi.org/10.1016/0920-5861(95)00311-8
  3. Reddy, S. and Vyas, S., "Recovery of Carbon Dioxide and Hydrogen from PSA Tail Gas," Energy Procedia, 1(1), 149-154(2009). https://doi.org/10.1016/j.egypro.2009.01.022
  4. Ayastuy, J. L., Gurbani, A., González-Marcos, M. P. and Gutiérrez- Ortiz, M. A., "CO Oxidation on $Ce_{X}Zr_{1-X}O_{2}$-supported CuO Catalysts: Correlation Between Activity and Support Composition," Appl. Catal. A: Gen., 387(1-2), 119-128(2010). https://doi.org/10.1016/j.apcata.2010.08.015
  5. Wilkes, M. F., Hayden, P. and Bhattacharya, A. K., "Catalytic Studies on Ceria Lanthana Solid Solutions I. Oxidation of Methane," J. Catal., 219(2), 286-294(2003). https://doi.org/10.1016/S0021-9517(03)00044-7
  6. Lee, S. H., Lee, J. Y., Park, Y. M., Wee, J.-H. and Lee, K.-Y., "Complete Oxidation of Methane and CO at Low Temperature over $LaCoO_{3}$ Prepared by Spray-freezing/freeze-drying Method," Catal. Today, 117(1-3), 376-381(2006). https://doi.org/10.1016/j.cattod.2006.05.035
  7. Kusar, H. M. J., Ersson, A. G. and Järås, S. G., "Catalytic Combustion of Gasified Refuse-derived Fuel," Appl. Catal. B: Environ., 45(1), 1-11(2003). https://doi.org/10.1016/S0926-3373(03)00104-8
  8. Xu, Z., Zhen, M., Bi, Y. and Zhen, K., "Catalytic Properties of Ni Modified Hexaaluminates $LaNi_{y}Al_{12-y}O_{19-\delta}$ for $CO_{2}$ Reforming of Methane to Synthesis Gas," Appl. Catal. A: Gen., 198(1-2), 267-273(2000). https://doi.org/10.1016/S0926-860X(99)00518-9
  9. Zhang, K., Zhou, G., Li, J. and Cheng, T., "The Electronic Effects of Pr on $La_{1-x}Pr_{x}NiAl_{11}O_{19}$ for $CO_{2}$ Reforming of Methane," Catal. Commun., 10(14), 1816-1820(2009). https://doi.org/10.1016/j.catcom.2009.06.007
  10. Bansal, N. P. and Zhu, D., "Thermal Properties of Oxides with Magnetoplumbite Structure for Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 202(12), 2698-2703(2008). https://doi.org/10.1016/j.surfcoat.2007.09.048
  11. Machida, M., Eguchi, K. and Arai, H., "Catalytic Properties of $BaMal_{11}O_{19-\alpha}$(M=Cr, Mn, Fe, Co, and Ni) for High-temperature Catalytic Combustion," J. Catal., 120(2), 377-386(1989). https://doi.org/10.1016/0021-9517(89)90277-7
  12. Trovarelli, A., de Leitenburg, C., Boaro, M. and Dolcetti, G., "The Utilization of Ceria in Industrial Catalysis," Catal. Today, 50(2), 353-367(1999). https://doi.org/10.1016/S0920-5861(98)00515-X
  13. Bueno-López, A., Krishna, K., Makkee, M. and Moulijn, J. A., "Enhanced Soot Oxidation by Lattice Oxygen Via $La^{3+}$-doped $CeO_{2}$," J. Catal., 230(1), 237-248(2005). https://doi.org/10.1016/j.jcat.2004.11.027
  14. Zheng, J., Ren, X., Song, Y. and Ge, X., "Catalytic Combustion of Methane over Iron- and Manganese-substituted Lanthanum Hexaaluminates," React. Kinet. Catal. Lett., 97(1), 109-114(2009). https://doi.org/10.1007/s11144-009-0013-5
  15. Inoue, H., Sekizawa, K., Eguchi, K. and Arai, H., "Changes of Crystalline Phase and Catalytic Properties by Cation Substitution in Mirror Plane of Hexaaluminate Compounds," J. Solid State Chem., 121(1), 190-196(1996). https://doi.org/10.1006/jssc.1996.0027
  16. Li, S., Liu, H., Yan, L. and Wang, X., "Mn-substituted Ca-La- Hexaaluminate Nanoparticles for Catalytic Combustion of Methane," Catal. Commun., 8(3), 237-240(2007). https://doi.org/10.1016/j.catcom.2006.05.039