DOI QR코드

DOI QR Code

저온 용액공정을 이용한 인듐갈륨 산화물(IGO) 박막트랜지스터 제조 및 특성 연구

A Study on Indium Gallium Oxide Thin Film Transistors prepared by a Solution-based Deposition Method

  • 배은진 (영남대학교 화학공학부) ;
  • 이진영 (영남대학교 화학공학부) ;
  • 한승열 (오래곤주립대학교 화학생물환경공학부) ;
  • ;
  • 류시옥 (영남대학교 화학공학부)
  • Bae, Eunjin (School of Chemical Engineering, Yeungnam University) ;
  • Lee, Jin Young (School of Chemical Engineering, Yeungnam University) ;
  • Han, Seung-Yeol (School of Chemical, Biological and Environmental Engineering, Oregon State University) ;
  • Chang, Chih-Hung (School of Chemical, Biological and Environmental Engineering, Oregon State University) ;
  • Ryu, Si Ok (School of Chemical Engineering, Yeungnam University)
  • 발행 : 2011.10.01

초록

본 연구에서는 박막 트랜지스터(TFTs)에 사용 가능한 Indium Gallium 산화물(IGO) 박막을 스핀코팅을 이용한 화학적 용액공정을 사용하여 $SiO_2$/Si 기판 위에 증착시켰다. 또한 IGO 박막을 증착한 후에 이루어지는 열처리 온도가 박막의 결정화에 미치는 영향과 이들의 전기적 특성이 조사되었다. 스핀코팅법에 의한 IGO 박막을 증착하기 위해 사용된 In과 Ga의 비율은 2:1로 고정하였으며, 박막의 열처리 온도는 $300{\sim}600^{\circ}C$의 범위에서 변화시켰다. 공기 중에서 $300^{\circ}C$$600^{\circ}C$에서 1시간 동안 열처리한 IGO 박막을 사용하여 제조한 박막 트랜지스터의 전류 이동도(field effect mobility)는 각각 0.34와 3.83 $cm^2/V{\cdot}s$로서 양호한 전자소자의 성능을 보였다. 또한 on/off 전류비(current ratio)는 $10^5$ 이상이었으며, IGO 박막의 평균 투과율은 98%이었다.

Solution processed IGO thin films were prepared using a general chemical solution route by spin coating. The effect of the annealing temperature of IGO thin films based on the ratio of 2:1 of indium to gallium on crystallization was investigated with varying annealing temperature from $300^{\circ}C$ to $600^{\circ}C$. The electronic device characteristic of IGO thin film was investigated. The solution-processed IGO TFTs annealed at 300 and $600^{\circ}C$ in air for 1 h exhibited good electronic performances with field effect mobilities as high as 0.34 and 3.83 $cm^2/V{\cdot}s$, respectively. The on/off ratio of the IGO TFT in this work was $10^5$ with 98% transmittance.

키워드

참고문헌

  1. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M. and Hosono, H., "Thin-film Transistor Fabricated in Single-crystalline Transparent Oxide Semiconductor," Science, 300, 1269-1272 (2003). https://doi.org/10.1126/science.1083212
  2. Wang, S.-L., Chen, C.-Y., Hsieh, M.-K., Lee, W.-C., Kung, A. H. and Peng, L.-H., "In-Ga-O Based Double-Heater Phase Change Memory Cell," Proceedings of 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, IEEE, p. 33-36(2008).
  3. Hill, R., "Energy-gap Variations in Semiconductor Alloys," J. Phys. C: Solid State Phys., 7(3), 521-526(1974). https://doi.org/10.1088/0022-3719/7/3/009
  4. Yang, F., Ma, J., Luan, C. and Kong, L., "Structural and Optical Properties of $Ga_{2(1-x)}In_{2x}O_{3}$ Films Prepared on $\alpha-Al_{2}O_{3}$ (0001) by MOCVD," Appl. Surf. Sci., 255(8), 4401-4404(2009). https://doi.org/10.1016/j.apsusc.2008.10.129
  5. Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H. and Hosono, H., "Highly Electrically Conductive Indium-tin-oxide Thin Films Epitaxially Grown on Yttria-Stabilized Zirconia (100) by Pulsed-laser Deposition," Appl. Phys. Lett., 76(19), 2740-2742(2000). https://doi.org/10.1063/1.126461
  6. Prince, J. J., Ramamurthy, S., Subramanian, B., Sanjeeviraja, C. and Jayachandran, M., "Spray Pyrolysis Growth and Material Properties of $In_{2}O_{3}$ Films," J. Cryst. Growth, 240(1-2), 142-151(2002). https://doi.org/10.1016/S0022-0248(01)02161-3
  7. Edwards, D. D., Mason, T. O., Goutenoire, F. and Poepplmeier, K. R., "A New Transparent Conducting Oxide in the $Ga_{2(1-x)}In_{2x}O_{3}-SnO_{2}$ System," Appl. Phys. Lett., 70(13), 1706-1708(1997). https://doi.org/10.1063/1.118676
  8. Coutts, T. J., Young, D. L. and Li X., "Characterization of Transparent Conducting Oxides," MRS Bull., 25(8), 58-65(2000). https://doi.org/10.1557/mrs2000.152
  9. Ueda, N., Hosono, H., Waseda, R. and Kawazoe H., "Synthesis and Control of Conductivity of Ultraviolet Transmitting $\beta-Ga_{2}O_{3}$ Single Crystals," Appl. Phys. Lett., 70(26), 3561-3563(1997). https://doi.org/10.1063/1.119233
  10. Chiang, H. Q., Hong, D., Hung, C. M., Presley, R. E., Wager, J. F., Park, C.-H., Keszler, D. A. and Herman, G. S., "Thin-film Transistors with Amorphous Indium Gallium Oxide Channel Layers," J. Vac. Sci. & Technol. B, 24(6), 2702-2705(2006). https://doi.org/10.1116/1.2366569
  11. Vigreux, C., Binet, L., Gourier, D. and Piriou, B., "Formation by Laser Impact of Conducting $\beta-Ga_{2}O_{3}-In_{2}O_{3}$ Solid Solutions with Composition Gradients," J. Solid State Chem., 157(1), 94-101(2001). https://doi.org/10.1006/jssc.2000.9043
  12. Edwards, D. D., Folkins, P. E. and Mason, T. O., "Phase Equilibria in the $Ga_{2}O_{3}In_{2}O_{3}$ System," J. Am. Ceramic. Soc., 80(1), 253-257(1997). https://doi.org/10.1111/j.1151-2916.1997.tb02820.x
  13. Presley, R. E., Hong, D., Chiang, H. Q., Hung, C. M., Hoffman, R. L. and Wager, J. F., "Transparent Ring Oscillator Based on Indium Gallium Oxide Thin-film Transistors," Solid State Electronics, 50(3), 500-503(2006). https://doi.org/10.1016/j.sse.2006.02.004
  14. Mensinger, Z. L., Gatlin, J. T., Meyers, S. T., Zakharov, L. N., Keszler, D. A. and Johnson, D. W., "Synthesis of Heterometallic Group 13 Nanoclusters and links for Oxide Thin-Film Transistors," Angew. Chem., 120(49), 9626-9628(2008). https://doi.org/10.1002/ange.200803514
  15. Jung, J. Y., Park, N.-K., Han, S.-Y., Lee, T. J., Ryu, S. O. and Chang, C.-H., "The Growth of the Flower-like ZnO Structure using a Continuous Flow Reactor," Curr. Appl. Phys., 8(6), 720-724(2008). https://doi.org/10.1016/j.cap.2007.04.026
  16. Chun, H. J., Choi, Y. S., Bae, S. Y., Choi, H. C. and Park, J. H., "Single-crystalline Gallium-doped Indium Oxide Nanowires," Appl. Phys. Lett., 85(3), 461-463(2004). https://doi.org/10.1063/1.1771816