DOI QR코드

DOI QR Code

Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma

워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감

  • Lee, Chae Hong (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University) ;
  • Chun, Young Nam (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University)
  • 이채홍 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학부.BK21 바이오가스기반 수소생산 사업팀)
  • Published : 2011.08.01

Abstract

Tetrafluoromethane($CF_4$) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient $CF_4$ destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest $CF_4$ destruction of 97% was achieved at 2.2% $CF_4$, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/min waterjet flow rate.

사불화탄소($CF_4$)는 반도체 제조공정에서 에칭과 반응기 세척에서 사용되어온 가스이다. $CF_4$는 적외선을 강하게 흡수하고 대기 중 잔류시간이 길어서 지구온난화에 영향을 미치기 때문에 고효율의 분해가 필요하다. 본 연구에서는 플라즈마와 워터젯을 결합하여 워터젯 글라이딩 아크 플라즈마 시스템을 개발하고, 이를 이용하여 $CF_4$를 고효율로 분해할 수 있도록 방전영역을 증가시키고 다량의 OH 라디칼을 생성시킬 수 있는 최적의 조업 조건을 결정하였다. 공정 실험 변수로는 워터젯 주입량, $CF_4$ 초기 농도, 전체 가스량과 주입에너지량(SEI : Specific energy input)을 선정하였다. 변수실험을 통하여 워터젯 주입량이 25.5 mL/min, $CF_4$ 초기 농도 2.2%, 전체 가스량 9.2 L/min, SEI 7.2 kJ/L일 때 $CF_4$ 분해율은 최고 97%까지 도달하였다.

Keywords

References

  1. Chang, M. B. and Lee, H. M., "Abatement of Perfluorocarbons with Combined Plasma Catalysis in Atmospheric-pressure Environment," Catal. Today., 89, 109-115(2004). https://doi.org/10.1016/j.cattod.2003.11.016
  2. Xie, H., Sun, B. and Zhu, X., "Abatement of Perfluorocompounds with Microwave Plasma in Atmospheric Pressure Environment," J. Hazard. Mater., 168, 765-769(2009). https://doi.org/10.1016/j.jhazmat.2009.02.081
  3. Yu, N. S., Azatyan, V. V., Bolodian, I. A., Navzenya, V. Y., Kopylov, S. N., Shebeko, D. Y. and Zamishevski, E. D., "The Influence of Fluorinated Hydrocarbons on the Combustion of Gaseous Mixtures in a Closed Vessel," Combust. Flame., 121(3), 542-547 (2000). https://doi.org/10.1016/S0010-2180(99)00168-6
  4. Narengerile., Saito, H. and Watanabe, T., "Decomposition of Tetrafluoromethane by Water Plasma Generated Under Atmospheric Pressure," Thin Solid Films., 518, 929-935(2009). https://doi.org/10.1016/j.tsf.2009.07.164
  5. Kim, D. Y. and Park, D. W., "Decomposition of PFCs by Steam Plasma at Atmospheric Pressure," Surf. Coat. Technol., 202, 5280-5283(2008). https://doi.org/10.1016/j.surfcoat.2008.06.023
  6. Yu, S. J. and Chang, M. B., "Oxidative Conversion of PFC Via Plasma Processing with Dielectric Barrier Discharges," Plasma Chem. Plasma Process., 21(3), 311-327(2001). https://doi.org/10.1023/A:1011066208188
  7. Kuznetsova, N. Y. K. I. V., Gutsol, A. F., Fridman, A. A. and Kennedy, L. A., "Effect of "overshooting" in the Transitional Regimes of the Low-current Gliding Arc Discharge," J. Appl. Phys., 92(8), 4231-4237(2002). https://doi.org/10.1063/1.1505682
  8. Shmelev, V. M. and Margolin, A. D., "Propagation of an Electric Discharge over the Surface of Water and Semiconductor," High Temp., 41(6), 735-741(2003). https://doi.org/10.1023/B:HITE.0000008327.80183.0e
  9. Watanabe, T. and Tsuru, T., "Water Plasma Generation Under Atmospheric Pressure for HFC Destruction," Thin Solid Films., 516, 4391-4396(2008). https://doi.org/10.1016/j.tsf.2007.10.062
  10. Kuroki, T., Tanaka, S., Okubo, M. and Yamamoto, T., "Low Pressure Pulse-modulated and Radio-frequency Plasma for $CF_{4}$ Decomposition," IEEE., 4, 2900-2905(2005).
  11. Hong, Y. C., Kim, H. S. and Uhm, H. S., "Reduction of Perfluorocompound Emissions by Microwave Plasma-torch," Thin Solid Films., 435, 329-334(2003). https://doi.org/10.1016/S0040-6090(03)00363-8
  12. Sun, J. W. and Park, D. H., "$CF_{4}$ Decomposition by Thermal Plasma Processing," Korean J. Chem. Eng., 20(3), 476-481(2003). https://doi.org/10.1007/BF02705551
  13. Du, C. M., Yan, J. H. and Cheron, B., "Decomposition of Toluene in a Gliding Arc Discharge Plasma Reactor," Plasma Source Sci. Technol., 16, 791-797(2007). https://doi.org/10.1088/0963-0252/16/4/014
  14. Du, C. M. and Yan, J. H., "Electrical and Spectral Characteristics of a Hybrid Gliding Arc Discharge In Air-water," IEEE Trans. Plasma Sci., 35(6), 1648-1650(2007). https://doi.org/10.1109/TPS.2007.901941
  15. Su, Z. Z., Ito, K., Takashim, K., Katsura, S., Onda, K. and Mizuno, A., "OH Radical Generation by Atmospheric Pressure Pulsed Discharge Plasma and Its Quantitative Analysis by Monitoring CO Oxidation," J. Phys. D: Appl. Phys., 35, 3192-3198(2002). https://doi.org/10.1088/0022-3727/35/24/307

Cited by

  1. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment vol.12, pp.21, 2020, https://doi.org/10.3390/su12218981