DOI QR코드

DOI QR Code

A Study of Enzymatic and Water Degumming Using Crude Canola Oil

Crude Canola Oil의 효소 탈검과 수용성 탈검에 관한 연구

  • Jang, Myung Gwi (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Kim, Deog Keun (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Park, Soon Chul (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Lee, Jin Suk (Department of New and Renewable Energy, Korea Institute of Energy Research) ;
  • Kim, Seung Wook (Department of Chemical and Biological Engineering, Korea University)
  • 장명귀 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 김덕근 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 박순철 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 이진석 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Published : 2011.08.01

Abstract

In this study, degumming process was carried out for reducing to less than 10 ppm of phosphorus contents and primary properties of crude canola oil including 0.64 mgKOH/g of acid value, 0.09% of water contents, 0.13% of insoluble impurities, and 40 ppm of phosphorus contents. Efficiency of water degumming and enzymatic degumming was compared for the selection of suitable process obtaining feedstock of biodiesel. Degumming method was determined for preparation of raw material of biodiesel, and reaction conditions were also established. The most effective conditions for water degumming were 2% distilled water (w/w oil), $30^{\circ}C$ of reaction temperature, 900 rpm of agitation speed, and 30 min of reaction time, respectively. In case of enzymatic degumming, optimal conditions were found to be 90 ppm of phospholipase A2 (w/w oil), $50^{\circ}C$ of reaction temperature at pH 5, respectively. When comparing water degumming with enzymatic degumming, efficiency of enzymatic degumming was better than water degumming. However, water degumming method was much more suitable for the production of biodiesel feedstock considering reaction time and process feasibility.

본 연구에서는 원료 유지로 산가 0.68 mgKOH/g, 수분 함량 0.09%, 고형물 함량 0.13%, 인 함량 40 ppm가량의 crude canola oil을 바이오디젤의 원료유로 활용하기 위하여 인 함량을 10 ppm 이하로 낮추는 탈검 공정을 수행하였다. Crude canola oil을 바이오디젤의 원료유로 사용하기 위해 수용성 탈검과 phospholipase A2를 탈검제로 하는 효소 탈검 공정을 비교하는 실험을 수행하였으며, 분석 결과를 바탕으로 바이오디젤의 원료유로써 조건을 만족시키는 탈검 방법을 선정하고 반응 조건을 확립하였다. 수용성 탈검의 경우에는 증류수 사용량 oil 대비 2 wt%, 반응온도 $30^{\circ}C$, 교반 속도 900 rpm에서 탈검 효율이 다른 조건에 비하여 높았으며, 반응 시간은 30분이 가장 효과적인 것으로 나타났다. Phospholipase A2를 탈검제로 사용하는 효소 탈검의 경우에는 인 함량결과를 보면 모든 조건에서 비슷한 탈검 효율을 나타내었다. 그리하여 산가 분석을 실시한 결과, 효소 투입량 oil 대비 90 ppm, pH 5, 반응 온도 $50^{\circ}C$에서의 탈검 효율이 다른 조건과 비해 우수하였다. 수용성 탈검과 효소 탈검을 비교해 보면, 효소 탈검이 효율이 높았으나 바이오디젤의 원료유를 생산하는 목적의 경우, 반응시간, 공정의 경제성을 고려할 때 수용성 탈검을 선택하는 것이 유리하다고 판단되었다.

Keywords

References

  1. Korbitz, W., "New Trends in Developing Biodiesel World-wide," Conference on Power crops for the Americas, May, Miami, 2002.
  2. Kim, H. R., "Biodiesel," Prospect. Ind. Chem., 5(1), 27-34(2002).
  3. Graboski, M. S. and McCormick, R. L., "Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines," Prog. Energy Combust. Sci., 24, 125-164(1998). https://doi.org/10.1016/S0360-1285(97)00034-8
  4. IEA., "Biofuels for Transport," IEA Bookshop(2004).
  5. Carlson, K., "Acid and Alkali Refining of Canola Oil," INFORM 4, 272-281(1993).
  6. Denise, J., "Fats refining. In: Oils & Fats Manual," Karleskind, A., Lavoisier Publishing, Paris (France), 2, 807-895(1996).
  7. Dahlke, K., Eichelsbacher, M., $EnzyMax^{(R)}$ and $ALCON^{(R)}$ - Lurgi's route to physical refining. In: Emerging Technologies, Current Practices, Quality Control, Technology Transfer, and Environmental Issues. Eds. S. S. Koseoglu, K. C. Rhee, R. F. Wilson, AOCS Press, Champaign IL (USA), 53-59(1998).
  8. C molik, J. and Pokorn , J., "Physical Refining of Edible Oils," Eur. J. Lipid Sci. Technol. 102, 472-486(2000). https://doi.org/10.1002/1438-9312(200008)102:7<472::AID-EJLT472>3.0.CO;2-Z
  9. Mainda, G., "Degumming of Vegetable Oil by a New Microbial Lipase," Food Technol. Biotechnol, 44(1), 101-104 (2006).
  10. Kim, C., "Enzymatic Oil-degumming by a Novel Microbial Phospholipase," Eur. J. Lipid Sci. Technol, 103, 333-340(2001). https://doi.org/10.1002/1438-9312(200106)103:6<333::AID-EJLT333>3.0.CO;2-F
  11. Edward, A. D., "Diversity of Group Types, Regulation, and Function of Phospholipase A2," The Journal of Biological Chemisry, 269(18), 13057-13060(1994).
  12. Kim, D. K., Choi, J. D., Park, J. Y., Lee, J. S., Park, S. B. and Park, S. C., "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47(6), 762-767(2009).
  13. AOCS Officical Method Ca 3a-46, "Insoluble Impurity," Official Method and Recommended practices of the AOCS, Fifth Ed. AOCS. Champaign, Illinois(2009).
  14. AOCS Officical Method Ca 12-55, "Phosphorus, " Official Method and Recommended practices of the AOCS, Fifth Ed. AOCS. Champaign, Illinois(1997a).
  15. AOCS Officical Method Ea 8-58, "Moisture, Karl Fischer Volumetric Method," Official Method and Recommended practices of the AOCS, Fifth Ed. AOCS. Champaign, Illinois(2009).
  16. AOCS Officical Method Cd 3d-63, "Acid Value", Official Method and Recommended practices of the AOCS, Fifth Ed. AOCS. Champaign, Illinois(2003).
  17. Gustone, F. D., "Fatty Acid and Lipid Chemistry," Chapman & Hall, UK, 207(1996).
  18. Kudo, I. and Murakami, M., "Phospholipase $A_{2}$ Enzymes," Prostaglandins & other Lipid Mediators, 68-69, 3-58(2002). https://doi.org/10.1016/S0090-6980(02)00020-5
  19. Seddon, J. M. and Templer, R. H., "Polymorphism of Lipid- Water Systems," from the Handbook of Biological Physics, 1. R. Lipowsky, and E. Sackmann. (c), Elsevier Science B.V. ISBN 0- 444-81975-4(1995).
  20. CEN, EN 14214, "Biodiesel Standard"(2003).