DOI QR코드

DOI QR Code

Propectives of Environmental Colorimetric-Sensors

환경색센서에 관한 기술 전망

  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Byunghwan (Department of Chemical System Engineering, Keimyung University)
  • 김영훈 (광운대학교 화학공학과) ;
  • 이병환 (계명대학교 화학시스템공학과)
  • Published : 2011.08.01

Abstract

The electrochemical or optical sensors for environmental pollutants are developed over the past several years. Nowadays, the development of colorimetric sensing is particularly challenging since it requires no equipment at all as color changes can be detected by the naked eye. Visual detection can give immediate qualitative information and is becoming increasingly appreciated in terms of quantitative analysis. In addition, simple colorimetric-sensor have shown useful in the detection, identification, and quantification of volatile organic compounds(VOC) in gas phase or heavy metal ion in aqueous phase. In this review, we investigated the wide applications and some drawbacks of colorimetric-sensors. And thus, we try to suggest the methodologies of development approach of multi-functional and reversible colorimetric-sensor.

지난 수십년 동안, 환경오염물질에 대한 광학적 전기화학적 검출 방법에 관한 다양한 연구가 진행되었다. 최근에는 저렴하고, 장치가 불필요한 육안 식별 가능한 환경색센서가 개발되고 있다. 시각적 정성분석은 대상물질에 대한 즉각적인 정보를 제공하여, 실시간 현장 분석이 가능하게 해준다. 또한 정량분석이 가능한 색센서에 대한 관심도 높아지고 있다. 환경색센서는 기상의 VOC, 액상의 중금속 분석용으로 주로 개발되고 있다. 이에 본 총설에서는 다양한 환경색센서의 활용분야를 살펴보고, 기존 색센서의 문제점을 파악한 다음 환경색센서 기술의 발전방향에 관하여 전망하였다.

Keywords

References

  1. Quang, D. T. and Kim, J. S., "Fluoro- and Chromogenic Chemdosimeters for Heavy Metal Ion Detection in Solution and Biospecimens," Chem. Rev., 110, 6280-6302(2010). https://doi.org/10.1021/cr100154p
  2. Rock, F., Barsan, N. and Weimar, U., "Electronic Nose: Current Status and Future Trends," Chem. Rev., 108, 705-725(2008). https://doi.org/10.1021/cr068121q
  3. Nath, N. and Chilkoti, A., "Label Free Colorimetric Biosensing Using Nanparticles," Journal of Fluorescence, 14, 377-390(2004). https://doi.org/10.1023/B:JOFL.0000031819.45448.dc
  4. Drechsler, U., Erdogan, B. and Rotello, V. M., "Nanoparticles : Scaffolds for Molecular Recognition," Chem. Eur. J., 10, 5570-5580(2004). https://doi.org/10.1002/chem.200306076
  5. Suslick, K. S., "An Optoelectronic Nose : "Seeing" Smells by Means of Colorimetric Sensor Arrays," MRS Bull., 720-726(2004).
  6. Zhao, W., Brook, M. A. and Li, Y., "Design of Gold Nanoparticle- based Colorimetric Biosensing Assays," Chem. Bio. Chem., 9, 2363-2371(2008). https://doi.org/10.1002/cbic.200800282
  7. Kim, Y., Johnson, R. C. and Hupp, J. T., "Gold Nanoparticle- Based Sensing of "Spectroscopically Silent" Heavy Metal Ions," Nano Lett., 1, 165-167(2001). https://doi.org/10.1021/nl0100116
  8. Alizadeh, A., Khodaei, M. M., Karami, C., Workentin, M. S., Shamsipur, M. and Sadeghi, M., "Rapid and Selective Lead (II) Colorimetric Sensor Based on Azacrown Ether-functionalized Gold Nanoparticles," Nanotechnology, 21, 315503-315512(2010). https://doi.org/10.1088/0957-4484/21/31/315503
  9. Hung, Y. L., Hsiung, T. M., Chen, Y. Y., Huang, Y. F. and Huang, C. C., "Colorimetric Detection of Heavy Metal Ions Using Label- Free Gold Nanoparticles and Alkanethiols," J. Phys. Chem, C, 114, 16329-16334(2010). https://doi.org/10.1021/jp1061573
  10. Lisowski, C. E. and Hutchison, J. E., "Malonamide-Functionalized Gold Nanoparticles for Selective, Colorimetric Sensing of Trivalent Lanthanide Ions," Anal. Chem., 81, 10246-10253(2009). https://doi.org/10.1021/ac902271t
  11. Kalluri, J. R., Arbneshi, T., Afrin, K. S., Neely, A., Candice, P., Varisli, B., Washington, M., McAfee, S., Robinson, B., Banerjee, S., Singh, A. K., Senapati, D. and Ray P. C., "Use of Gold Nanoparticle sin a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay : Selective Detection of Arsenic in Groundwater," Angew Chem, 48, 9668-9671(2009). https://doi.org/10.1002/anie.200903958
  12. Yao, Y., Tian, D. and Li, H., "Cooperative Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for colorimetric $Co^{2+}$ Sensing," ACS Appl. Mater. Interf., 2, 684-690(2010). https://doi.org/10.1021/am900741h
  13. Palomares, E., Vilar, R. and Durrant, J. R., "Heterogeneous Colorimetric Sensor for Mercuric Salts," Chem. Commun., 362-363 (2004).
  14. Kada, S., Furui, A., Akiyama, Y., Nakahara, Y. and Kimura, K., "Application of Gold Nanoparticles to Spectrophotometric Sensing of Hydrophillic Anions Based on Molecular Recognition by Urea Derivative," Anaytical Sciences, 25, 261-266(2009). https://doi.org/10.2116/analsci.25.261
  15. Ai, K., Liu, Y. and Lu, L., "Hydrogen-Bonding Recognition- Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula," J. Am. Chem. Soc., 131, 9496-9497(2009). https://doi.org/10.1021/ja9037017
  16. Chen, X., Parker, S. G., Zou, G., Su, W. and Zhang, Q., "$\beta$-Cyclodextrin- Functionalized Silver Nanoparticles for the Naked eye Detection of Aromatic Isomers," ACS Nano, 4, 6387-6394(2010). https://doi.org/10.1021/nn1016605
  17. Huang, J., Xu, Y. and Qian, X., "A Rhodamine-Based $Hg^{2+}$ Sensor with High Selectivity and Sensitivity in Aqueous Solution: A $NS_{2}$-Containing Receptor," J. Org. Chem., 74, 2167-2170 (2009). https://doi.org/10.1021/jo802297x
  18. Shunmugam, R., Gabriel, G. J., Smith, C. E., Aamer, K. A. and Tew, G. N., "A Highly Selective Colorimetric Aqueous Sensor for Mercury," Chem. Eur. J., 14, 3904-3907(2008). https://doi.org/10.1002/chem.200701895
  19. Huang, J., Xu, Y. and Qian, X., "A Red-shift Colorimetric and Fluorescent Sensor for $Cu^{2+}$ in Aqueous Solution: Unsymmetrical 4,5-diaminonaphthalimide with N-H Deprotonation Induced by Metal Ions," Org. Biomol. Chem., 7, 1299-1303(2009). https://doi.org/10.1039/b818611a
  20. Guo, Z. Q., Chen, W. Q. and Duan, X. M., "Highly Selective Visual Detection of Cu(II) Utilizing Intramolecular Hydrogen Bond- Stabilized Merocyanine in Aqueous Buffer Solution," Org. Lett., 12, 2202-2205(2010). https://doi.org/10.1021/ol100381g
  21. Song, F., Garner, A. L. and Koide, K., "A Highly Sensitive Fluorescent Sensor for Palladium Based on the Allylic Oxidative Insertion Mechanism," J. Am. Chem. Soc., 129, 12354-12355(2007). https://doi.org/10.1021/ja073910q
  22. Yagi, S., Nakamuraa, S., Watanabea, D. and Nakazumi, H., "Colorimetric Sensing of Metal Ions by Bis(spiropyran) Podands: Towards Naked-eye Detection of Alkaline Earth Metal Ions," Dyes and Pigments, 80, 98-105(2009). https://doi.org/10.1016/j.dyepig.2008.05.012
  23. Gunnlaugsson, T. and Leonard, J. P., "Sythesis and Evaluation of Colorimetric Chemosensors for Monitoring Sodium and Potassium Ions in the Intracellular Concentration Range," J. Chem. Soc., Perkin trans. 2, 1980-1985(2002).
  24. Jose, D. A., Mishra, S., Ghosh, A., Shrivastav, A., Mishra, S. K. and Das, A., "Colorimetric Sensor for ATP in Aqueous Solution," Org. Lett., 9, 1979-1982(2007). https://doi.org/10.1021/ol0705797
  25. Qu, Y., Hua, J. and Tian, H., "Colorimetric and Ratiometric Red Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole," Org Lett., 12, 3320-3323(2010). https://doi.org/10.1021/ol101081m
  26. Janzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K. and Suslick, K. S., "Colorimetric Sensor Arrays for Volatile Organic Compounds," Anal Chem., 78, 3591-3600(2006). https://doi.org/10.1021/ac052111s
  27. Fox, S. L., Daum, K. A., Miller, C. J. and Cortez, M. M., "Emergency First Responders' Experence With Colorimetric Detection Methods," Idaho National Laboratory, Oct. 2007.
  28. Xu, Z., Pan, J., Spring, D. R., Cui, J. and Yoona, J., "Ratiometric Fluorescent and Colorimetric Sensors for $Cu^{2+}$ Based on 4,5-Disubstituted-1,8-Naphtalimide and Sensing Cyanide Via $Cu^{2+}$ Displacement Approach," Tetrahedron, 66, 1678-1683(2010). https://doi.org/10.1016/j.tet.2010.01.008
  29. Yoon, J., Jung, Y. S. and Kim, J. M., "A Combinatorial Approach for Colorimetric Differentiation of Organic Solvents Based on Conjugated Polymer-Embedded Electrospun Fibers," Adv. Funct. Mater., 19, 209-214(2009). https://doi.org/10.1002/adfm.200800963

Cited by

  1. Colorimetric detection of vesicle rupture by attack of Ag nanoparticles vol.30, pp.1, 2013, https://doi.org/10.1007/s11814-012-0102-4
  2. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.243
  3. Fluorescence detection of bisphenol A in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique vol.36, pp.9, 2011, https://doi.org/10.1007/s11814-019-0342-7