Browse > Article
http://dx.doi.org/10.9713/kcer.2011.49.4.393

Propectives of Environmental Colorimetric-Sensors  

Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
Lee, Byunghwan (Department of Chemical System Engineering, Keimyung University)
Publication Information
Korean Chemical Engineering Research / v.49, no.4, 2011 , pp. 393-399 More about this Journal
Abstract
The electrochemical or optical sensors for environmental pollutants are developed over the past several years. Nowadays, the development of colorimetric sensing is particularly challenging since it requires no equipment at all as color changes can be detected by the naked eye. Visual detection can give immediate qualitative information and is becoming increasingly appreciated in terms of quantitative analysis. In addition, simple colorimetric-sensor have shown useful in the detection, identification, and quantification of volatile organic compounds(VOC) in gas phase or heavy metal ion in aqueous phase. In this review, we investigated the wide applications and some drawbacks of colorimetric-sensors. And thus, we try to suggest the methodologies of development approach of multi-functional and reversible colorimetric-sensor.
Keywords
Colorimetric Sensor; Color Change; Heavy Metal Ion; Plasmonic Nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nath, N. and Chilkoti, A., "Label Free Colorimetric Biosensing Using Nanparticles," Journal of Fluorescence, 14, 377-390(2004).   DOI   ScienceOn
2 Drechsler, U., Erdogan, B. and Rotello, V. M., "Nanoparticles : Scaffolds for Molecular Recognition," Chem. Eur. J., 10, 5570-5580(2004).   DOI   ScienceOn
3 Suslick, K. S., "An Optoelectronic Nose : "Seeing" Smells by Means of Colorimetric Sensor Arrays," MRS Bull., 720-726(2004).
4 Zhao, W., Brook, M. A. and Li, Y., "Design of Gold Nanoparticle- based Colorimetric Biosensing Assays," Chem. Bio. Chem., 9, 2363-2371(2008).   DOI   ScienceOn
5 Kim, Y., Johnson, R. C. and Hupp, J. T., "Gold Nanoparticle- Based Sensing of "Spectroscopically Silent" Heavy Metal Ions," Nano Lett., 1, 165-167(2001).   DOI   ScienceOn
6 Alizadeh, A., Khodaei, M. M., Karami, C., Workentin, M. S., Shamsipur, M. and Sadeghi, M., "Rapid and Selective Lead (II) Colorimetric Sensor Based on Azacrown Ether-functionalized Gold Nanoparticles," Nanotechnology, 21, 315503-315512(2010).   DOI   ScienceOn
7 Hung, Y. L., Hsiung, T. M., Chen, Y. Y., Huang, Y. F. and Huang, C. C., "Colorimetric Detection of Heavy Metal Ions Using Label- Free Gold Nanoparticles and Alkanethiols," J. Phys. Chem, C, 114, 16329-16334(2010).   DOI   ScienceOn
8 Lisowski, C. E. and Hutchison, J. E., "Malonamide-Functionalized Gold Nanoparticles for Selective, Colorimetric Sensing of Trivalent Lanthanide Ions," Anal. Chem., 81, 10246-10253(2009).   DOI   ScienceOn
9 Kalluri, J. R., Arbneshi, T., Afrin, K. S., Neely, A., Candice, P., Varisli, B., Washington, M., McAfee, S., Robinson, B., Banerjee, S., Singh, A. K., Senapati, D. and Ray P. C., "Use of Gold Nanoparticle sin a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay : Selective Detection of Arsenic in Groundwater," Angew Chem, 48, 9668-9671(2009).   DOI   ScienceOn
10 Yao, Y., Tian, D. and Li, H., "Cooperative Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for colorimetric $Co^{2+}$ Sensing," ACS Appl. Mater. Interf., 2, 684-690(2010).   DOI   ScienceOn
11 Palomares, E., Vilar, R. and Durrant, J. R., "Heterogeneous Colorimetric Sensor for Mercuric Salts," Chem. Commun., 362-363 (2004).
12 Quang, D. T. and Kim, J. S., "Fluoro- and Chromogenic Chemdosimeters for Heavy Metal Ion Detection in Solution and Biospecimens," Chem. Rev., 110, 6280-6302(2010).   DOI   ScienceOn
13 Rock, F., Barsan, N. and Weimar, U., "Electronic Nose: Current Status and Future Trends," Chem. Rev., 108, 705-725(2008).   DOI   ScienceOn
14 Huang, J., Xu, Y. and Qian, X., "A Rhodamine-Based $Hg^{2+}$ Sensor with High Selectivity and Sensitivity in Aqueous Solution: A $NS_{2}$-Containing Receptor," J. Org. Chem., 74, 2167-2170 (2009).   DOI   ScienceOn
15 Kada, S., Furui, A., Akiyama, Y., Nakahara, Y. and Kimura, K., "Application of Gold Nanoparticles to Spectrophotometric Sensing of Hydrophillic Anions Based on Molecular Recognition by Urea Derivative," Anaytical Sciences, 25, 261-266(2009).   DOI   ScienceOn
16 Ai, K., Liu, Y. and Lu, L., "Hydrogen-Bonding Recognition- Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula," J. Am. Chem. Soc., 131, 9496-9497(2009).   DOI   ScienceOn
17 Chen, X., Parker, S. G., Zou, G., Su, W. and Zhang, Q., "$\beta$-Cyclodextrin- Functionalized Silver Nanoparticles for the Naked eye Detection of Aromatic Isomers," ACS Nano, 4, 6387-6394(2010).   DOI   ScienceOn
18 Shunmugam, R., Gabriel, G. J., Smith, C. E., Aamer, K. A. and Tew, G. N., "A Highly Selective Colorimetric Aqueous Sensor for Mercury," Chem. Eur. J., 14, 3904-3907(2008).   DOI   ScienceOn
19 Huang, J., Xu, Y. and Qian, X., "A Red-shift Colorimetric and Fluorescent Sensor for $Cu^{2+}$ in Aqueous Solution: Unsymmetrical 4,5-diaminonaphthalimide with N-H Deprotonation Induced by Metal Ions," Org. Biomol. Chem., 7, 1299-1303(2009).   DOI   ScienceOn
20 Guo, Z. Q., Chen, W. Q. and Duan, X. M., "Highly Selective Visual Detection of Cu(II) Utilizing Intramolecular Hydrogen Bond- Stabilized Merocyanine in Aqueous Buffer Solution," Org. Lett., 12, 2202-2205(2010).   DOI   ScienceOn
21 Song, F., Garner, A. L. and Koide, K., "A Highly Sensitive Fluorescent Sensor for Palladium Based on the Allylic Oxidative Insertion Mechanism," J. Am. Chem. Soc., 129, 12354-12355(2007).   DOI   ScienceOn
22 Yagi, S., Nakamuraa, S., Watanabea, D. and Nakazumi, H., "Colorimetric Sensing of Metal Ions by Bis(spiropyran) Podands: Towards Naked-eye Detection of Alkaline Earth Metal Ions," Dyes and Pigments, 80, 98-105(2009).   DOI   ScienceOn
23 Gunnlaugsson, T. and Leonard, J. P., "Sythesis and Evaluation of Colorimetric Chemosensors for Monitoring Sodium and Potassium Ions in the Intracellular Concentration Range," J. Chem. Soc., Perkin trans. 2, 1980-1985(2002).
24 Fox, S. L., Daum, K. A., Miller, C. J. and Cortez, M. M., "Emergency First Responders' Experence With Colorimetric Detection Methods," Idaho National Laboratory, Oct. 2007.
25 Jose, D. A., Mishra, S., Ghosh, A., Shrivastav, A., Mishra, S. K. and Das, A., "Colorimetric Sensor for ATP in Aqueous Solution," Org. Lett., 9, 1979-1982(2007).   DOI   ScienceOn
26 Qu, Y., Hua, J. and Tian, H., "Colorimetric and Ratiometric Red Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole," Org Lett., 12, 3320-3323(2010).   DOI   ScienceOn
27 Janzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K. and Suslick, K. S., "Colorimetric Sensor Arrays for Volatile Organic Compounds," Anal Chem., 78, 3591-3600(2006).   DOI   ScienceOn
28 Xu, Z., Pan, J., Spring, D. R., Cui, J. and Yoona, J., "Ratiometric Fluorescent and Colorimetric Sensors for $Cu^{2+}$ Based on 4,5-Disubstituted-1,8-Naphtalimide and Sensing Cyanide Via $Cu^{2+}$ Displacement Approach," Tetrahedron, 66, 1678-1683(2010).   DOI   ScienceOn
29 Yoon, J., Jung, Y. S. and Kim, J. M., "A Combinatorial Approach for Colorimetric Differentiation of Organic Solvents Based on Conjugated Polymer-Embedded Electrospun Fibers," Adv. Funct. Mater., 19, 209-214(2009).   DOI   ScienceOn