DOI QR코드

DOI QR Code

Studies on Genetic Variation of Soluble Solids, Acidity and Carotenoid Contents in Tomato Fruits from Germplasm

국내외에서 수집된 토마토에서 당도, 산도, 카로티노이드 색소의 유전변이에 관한 연구

  • Son, Cho-Yee (Department of Horticulture, Hankyong National University) ;
  • Jung, Yu-Jin (Institute of Genetic Engineering, Hankyong National University) ;
  • Lee, In-Hye (Department of Horticulture, Hankyong National University) ;
  • Kyoung, Jung-Ho (Department of Horticulture, Hankyong National University) ;
  • Lee, Jang-Su (DongWon Nongsan Seed Co.) ;
  • Kang, Kwon-Kyoo (Department of Horticulture, Hankyong National University)
  • Received : 2010.08.30
  • Accepted : 2011.02.16
  • Published : 2011.04.30

Abstract

Tomato (Lycopersicon esculentum M.) is one of the most important crops to the fresh vegetable market and the food processing industry. To evaluate genetic variation in tomato fruits, major characteristics such as soluble solids, acidity and carotenoid contents were analyzed for 771 genetic resource lines. Lines in red color was about 85% which is the largest one followed by peach color, yellow, green, orange, and black. The sweetness of juice ranged from 2.2 to 11.5% (in brix), the average being 5.6%. The acidity ranged from 0.124% to 1.665%, and the average was 0.881%. The lycopine contents was up to 80.4 ${\mu}g/g$, and 43.4 ${\mu}g/g$ in average. ${\beta}$-carotine ranged 1.8 to 48.8 ${\mu}g/g$ and it average was 10.8 ${\mu}g/g$. Statistical analysis indicates that there is coefficient of correlation between acidity and sweetness, acidity and pH, pH and lycopine, lycopine and ${\beta}$-carotine. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected characteristic species.

토마토는 세계적으로 매우 중요한 과채류로서, 과실 내에 카로티노이드의 함량이 많아 항암효과, 노화방지 및 비타민이 풍부하다고 알려져 있다. 본 연구에서는 국내외로 부터 수집한 토마토 유전자원 771계통을 대상으로 과색, 과형, 과중, pH, 산도 및 당도 등 주요형질의 분포를 분석하였다. 과색의 분포는 적색과가 약 85%을 차지하며, 복숭아색, 황색, 녹, 오랜지, 백색, 흑색순을 보였다. 과형은 편구가 46%, 정구가 27% 등 다양한 형태로 나타났으며, 과즙당도의 분포범위는 최소 2,2%부터 11,5%까지로 평균 5.6%이었다. 또한 과즙의 산도 분포 범위는 최소 0.124%부터 최대 1.665%까지로, 평균치는 0.881%이었다. 과육중의 라이코핀 함량의 분포범위는 최소 0.0 ${\mu}g/g$부터 80.4 ${\mu}g/g$까지로 평균 43.3 ${\mu}g/g$이었으며, ${\beta}$-카로틴 함량은 최소 1.8 ${\mu}g/g$부터 최대 48.8 ${\mu}g/g$까지로 평균치는 10.8 ${\mu}g/g$이었다. 수집 유전자원의 주요 형질간 상관는 당도와 산도, 산도와 pH, pH와 라이코핀, 라이코핀과 ${\beta}$-카로틴 등이 높은 상관관계를 보였다. 이상의 결과로부터 주요 형질이 높은 유전자원을 이용하여, 고당함유 품종육성, 고 색소함유 품종육성 등 고기능성 토마토 품종육성에 크게 기여 할 것이라고 생각된다.

Keywords

References

  1. Allen, G.R. 1972. An appraisal of contract farming J. Agric. Econ. 23:89-98. https://doi.org/10.1111/j.1477-9552.1972.tb01433.x
  2. Birchler, J.A., H. Yao and S. Chudalayandi. 2006. Unraveling the genetic basis of hybrid vigor. PNAS 103:12957-12958. https://doi.org/10.1073/pnas.0605627103
  3. Breto, M.P., M.J. Asins and E.A. Carbonell 1993. Genetic variability in Lycopersicon species and their genetic relationship. Theor. Appl. Genet. 86:113-120.
  4. Canady, M.A, Y.F. Ji and R.T. Chetelat. 2006. Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775-1778. https://doi.org/10.1534/genetics.106.065144
  5. Doganlar, S.A. Frary and S.D. Tanksley. 2000. The genetic basis of seed-weight variation: tomato as a model system. Theor. Appl. Genet. 100:1267-1273. https://doi.org/10.1007/s001220051433
  6. Frary, A. and S. Doganlar. 2003. Comparative genetics of crop plant domestication and evolution. Turkish J. Agricult. Forestry 27:59-69.
  7. Graeme E.H. A. Peters and J.D. Timothy. 1983. Assessing the colour of tomato fruit during ripening. J. Sci. Food Agri., 34:286-292. https://doi.org/10.1002/jsfa.2740340312
  8. Grandillo, S. and S.D. Tanksley. 1996. Analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92:935-951. https://doi.org/10.1007/BF00224033
  9. Jones, R.A. and S.J. Scott. 1983. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32:845-855. https://doi.org/10.1007/BF00042166
  10. Larry, R. and L. Joanne. 2007. Genetic resources of tomato. In Razdan, M.K. and A.K. Mattoo (eds.). Genetic improvement of solanaceous crops-Vol. 2. Enfield, NH: Science Publishers. Tomato.
  11. Peleman, J.D. and J.R. Van der Voort. 2003. Breeding by design. Trends in Plant Science 8:330-334. https://doi.org/10.1016/S1360-1385(03)00134-1
  12. Rick, C.M. and R.T. Chetelat. 1995. Utilization of related wild species for tomato improvement. Acta Horticult. 412:21-38.
  13. Sanjiv, A. and V.R. Akkinappally. 2000. Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association or its Licensors. 19:163-169.
  14. Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14. https://doi.org/10.1007/s00425-003-1105-5
  15. Lee, Y.C. 1984. Effect of ripening methods and harvest time on vitamin content of tomatoes. Kor. J. Food Sci. Technol. 16(1):59-65.
  16. Park, Y.K., Y.H. Kang, B.W. Lee and H.M. Seog. 1997. Changes of carotenoids of the pumpkin powder during storage. J. Kor. Soc. Food Sci. Nutr. 26(1):32-36.
  17. 김미정, 김지은, 신은연. 2002. 방울토마토의 계절별 당도 조사 연구. 비슬론집 11:625-631.

Cited by

  1. Comparison of Antioxidant Activities in Tomato Leaves and Stems vol.29, pp.6, 2016, https://doi.org/10.7732/kjpr.2016.29.6.642
  2. LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과 vol.28, pp.5, 2011, https://doi.org/10.5352/jls.2018.28.5.569
  3. 토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석 vol.47, pp.1, 2011, https://doi.org/10.5010/jpb.2020.47.1.078