DOI QR코드

DOI QR Code

DIFFERENTIAL EQUATIONS CHARACTERIZING TIMELIKE AND SPACELIKE CURVES OF CONSTANT BREADTH IN MINKOWSKI 3-SPACE E13

  • Onder, Mehmet (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University) ;
  • Kocayigit, Huseyin (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University) ;
  • Canda, Elif (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University)
  • Received : 2010.05.14
  • Published : 2011.07.01

Abstract

In this paper, we give the differential equations characterizing the timelike and spacelike curves of constant breadth in Minkowski 3-space $E^3_1$. Furthermore, we give a criterion for a timelike or spacelike curve to be the curve of constant breadth in $E^3_1$. As an example, the obtained results are applied to the case $\rho$ = const. and $k_2$ = const., and are discussed.

Keywords

References

  1. N. H. Ball, On Ovals, Amer. Math. Monthly 37 (1930), no. 7, 348-353. https://doi.org/10.2307/2299271
  2. E. Barbier, J. de Math. 2 (1860), no. 5, 272-286.
  3. W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76 (1915), no. 4, 504-513. https://doi.org/10.1007/BF01458221
  4. W. Blaschke, Leibziger Berichte, 67 (1917), p. 290.
  5. S. Breuer and D. Gottlieb, The Reduction of Linear Ordinary Differential Equations to Equations with Constant Coefficients, J. Math. Anal. Appl. 32 (1970), no. 1, 62-76. https://doi.org/10.1016/0022-247X(70)90318-5
  6. H. C. Chung, A differential-geometric criterion for a space curve to be closed, Proc. Amer. Math. Soc. 83 (1981), no. 2, 357-361. https://doi.org/10.1090/S0002-9939-1981-0624931-0
  7. L. Euler, De curvis triangularibus, Acta Acad. Prtropol. (1778), (1780), 3-30.
  8. M. Fujivara, On space curves of constant breadth, Tohoku Math. J. 5 (1914), 179-784.
  9. M. Kazaz, M. Onder, and H. Kocayit, Spacelike curves of constant breadth in Minkowski 4-space, Int. J. Math. Anal. (Ruse) 2 (2008), no. 21-24, 1061-1068.
  10. O. Kose, On space curves of constant breadth, Doga Mat. 10 (1986), no. 1, 11-14.
  11. A. Maden and O. Kose, On the curves of constant breadth in $E^4$ space, Turkish J. Math. 21 (1997), no. 3, 277-284.
  12. A. P. Mellish, Notes on differential geometry, Ann. of Math. (2) 32 (1931), no. 1, 181- 190. https://doi.org/10.2307/1968423
  13. B. O'Neil, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  14. F. Reuleaux, The Kinematics of Machinery, Trans. By A. B. W. Kennedy, Dover, Pub. Nex York, 1963.
  15. S. L. Ross, Differential Equations, John Wiley and Sons, Inc., New York, 1974.
  16. M. Sezer, Differential equations characterizing space curves of constant breadth and a criterion for these curves, Doga Mat. 13 (1989), no. 2, 70-78.
  17. S. Smakal, Curves of constant breadth, Czechoslovak Math. J. 23(98) (1973), 86-94.
  18. D. J. Struik, Differential geometry in the large, Bull. Amer. Math. Soc. 37 (1931), no. 2, 49-62. https://doi.org/10.1090/S0002-9904-1931-05094-1
  19. H. Tanaka, Kinematics Design of Com Follower Systems, Doctoral Thesis, Columbia Univ., 1976.
  20. J. Walrave, Curves and Surfaces in Minkowski Space, Doctoral Thesis, K. U. Leuven, Faculty of Sciences, Leuven, 1995.

Cited by

  1. Timelike Curves of Constant Breadth According to Bishop Frame in Minkowski 3-Space vol.41, pp.1, 2017, https://doi.org/10.1007/s40995-017-0191-3
  2. On Closed Space Curves in Minkowski Space–Time $${E_v^n}$$ vol.20, pp.2, 2012, https://doi.org/10.1007/s12591-012-0113-y