Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.4.849

DIFFERENTIAL EQUATIONS CHARACTERIZING TIMELIKE AND SPACELIKE CURVES OF CONSTANT BREADTH IN MINKOWSKI 3-SPACE E13  

Onder, Mehmet (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University)
Kocayigit, Huseyin (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University)
Canda, Elif (Department of Mathematics Faculty of Arts and Sciences Celal Bayar University)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.4, 2011 , pp. 849-866 More about this Journal
Abstract
In this paper, we give the differential equations characterizing the timelike and spacelike curves of constant breadth in Minkowski 3-space $E^3_1$. Furthermore, we give a criterion for a timelike or spacelike curve to be the curve of constant breadth in $E^3_1$. As an example, the obtained results are applied to the case $\rho$ = const. and $k_2$ = const., and are discussed.
Keywords
Minkowski 3-space; timelike curve; spacelike curve; constant breadth curve;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. Sezer, Differential equations characterizing space curves of constant breadth and a criterion for these curves, Doga Mat. 13 (1989), no. 2, 70-78.
2 S. Smakal, Curves of constant breadth, Czechoslovak Math. J. 23(98) (1973), 86-94.
3 D. J. Struik, Differential geometry in the large, Bull. Amer. Math. Soc. 37 (1931), no. 2, 49-62.   DOI
4 H. Tanaka, Kinematics Design of Com Follower Systems, Doctoral Thesis, Columbia Univ., 1976.
5 J. Walrave, Curves and Surfaces in Minkowski Space, Doctoral Thesis, K. U. Leuven, Faculty of Sciences, Leuven, 1995.
6 N. H. Ball, On Ovals, Amer. Math. Monthly 37 (1930), no. 7, 348-353.   DOI   ScienceOn
7 E. Barbier, J. de Math. 2 (1860), no. 5, 272-286.
8 W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76 (1915), no. 4, 504-513.   DOI
9 S. Breuer and D. Gottlieb, The Reduction of Linear Ordinary Differential Equations to Equations with Constant Coefficients, J. Math. Anal. Appl. 32 (1970), no. 1, 62-76.   DOI
10 W. Blaschke, Leibziger Berichte, 67 (1917), p. 290.
11 H. C. Chung, A differential-geometric criterion for a space curve to be closed, Proc. Amer. Math. Soc. 83 (1981), no. 2, 357-361.   DOI
12 L. Euler, De curvis triangularibus, Acta Acad. Prtropol. (1778), (1780), 3-30.
13 M. Fujivara, On space curves of constant breadth, Tohoku Math. J. 5 (1914), 179-784.
14 M. Kazaz, M. Onder, and H. Kocayit, Spacelike curves of constant breadth in Minkowski 4-space, Int. J. Math. Anal. (Ruse) 2 (2008), no. 21-24, 1061-1068.
15 O. Kose, On space curves of constant breadth, Doga Mat. 10 (1986), no. 1, 11-14.
16 A. Maden and O. Kose, On the curves of constant breadth in $E^4$ space, Turkish J. Math. 21 (1997), no. 3, 277-284.
17 A. P. Mellish, Notes on differential geometry, Ann. of Math. (2) 32 (1931), no. 1, 181- 190.   DOI
18 B. O'Neil, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
19 F. Reuleaux, The Kinematics of Machinery, Trans. By A. B. W. Kennedy, Dover, Pub. Nex York, 1963.
20 S. L. Ross, Differential Equations, John Wiley and Sons, Inc., New York, 1974.