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DIFFERENTIAL EQUATIONS CHARACTERIZING TIMELIKE

AND SPACELIKE CURVES OF CONSTANT BREADTH IN

MINKOWSKI 3-SPACE E3
1

Mehmet Önder, Hüseyin Kocayiğit, and Elif Candan

Abstract. In this paper, we give the differential equations characterizing
the timelike and spacelike curves of constant breadth in Minkowski 3-

space E3
1 . Furthermore, we give a criterion for a timelike or spacelike

curve to be the curve of constant breadth in E3
1 . As an example, the

obtained results are applied to the case ρ = const. and k2 = const., and

are discussed.

1. Introduction

Constant breadth curves were introduced by L. Euler in 1778 [7]. He studied
the constant breadth curves in the plane. After him, many geometers have
shown increased interest in the properties of plane convex curves. A brief
review of the most important publications on this subject has been published by
Struik [18]. Also, a number of interesting properties of plane curves of constant
breadth are included in the works of Ball [1], Barbier [2], Blaschke [3, 4] and
Mellish [12]. A space curve of constant breadth was obtained by Fujiwara by
taking a closed curve whose normal plane at a point P has only one more point
Q in common with the curve, and for which the distance d(P,Q) is constant
[8]. For such curves, PQ is also normal at Q. He also studied constant breadth
surfaces. Furthermore, Blaschke defined the curve of constant breadth on the
sphere [4]. Köse presented some concept for space curves of constant breadth in
Euclidean 3-space in [10] and differential equations characterizing space curves
of constant breadth were obtained by Sezer in [16]. Constant breadth curves
in Euclidean 4-space were given by Mağden and Köse [11]. Corresponding
characterizations for spacelike curves of constant breadth in Minkowski 4-space
were given by Kazaz, Onder and Kocayiğit [9].
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Furthermore, Reuleaux studied the curves of constant breadth and gave the
method related to these curves for the kinematics of machinery [14]. Then, con-
stant breadth curves had an importance for engineering sciences, particularly,
in com designs [19].

In this paper, we study the differential equations characterizing timelike and
spacelike curves of constant breadth in Minkowski 3-space E3

1 . Moreover, we
give the integral characterizations of these curves in E3

1 .

2. Preliminaries

The Minkowski 3-space E3
1 is the real vector space R3 provided with the

standard flat metric given by

g = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . An arbitrary vector

v⃗ = (v1, v2, v3) in E
3
1 can have one of three Lorentzian causal characters; it can

be spacelike if g(v⃗, v⃗) > 0 or v⃗ = 0, timelike if g(v⃗, v⃗) < 0 and null (lightlike)
if g(v⃗, v⃗) = 0 and v⃗ ̸= 0. Similarly, an arbitrary curve α⃗ = α⃗(s) can locally
be spacelike, timelike or null (lightlike), if all of its velocity vectors α⃗′(s) are
respectively spacelike, timelike or null (lightlike). We say that a timelike vector
is future pointing or past pointing if the first compound of the vector is positive
or negative, respectively. For any vectors x⃗ = (x1, x2, x3) and y⃗ = (y1, y2, y3)
in E3

1 , the vector product of x⃗ and y⃗ is defined by

x⃗× y⃗ =

∣∣∣∣∣∣
e⃗1 −e⃗2 −e⃗3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2),

where δij =

{
1 i = j,
0 i ̸= j,

e⃗i = (δi1, δi2, δi3) and e⃗1 × e⃗2 = −e⃗3, e⃗2 × e⃗3 = e⃗1,

e⃗3 × e⃗1 = −e⃗2.
The Lorentzian sphere and hyperbolic sphere of radius r and center 0 in E3

1

are given by

S2
1 =

{
x⃗ = (x1, x2, x3) ∈ E3

1 : g(x⃗, x⃗) = r2
}

and

H2
0 =

{
x⃗ = (x1, x2, x3) ∈ E3

1 : g(x⃗, x⃗) = −r2
}
,

respectively (See for details [13]).

Denote by {T⃗ , N⃗ , B⃗} the moving Frenet frame along the curve α⃗(s) in the
Minkowski space E3

1 . For an arbitrary spacelike curve α⃗(s) in the space E3
1 ,

the following Frenet formulae are given, T⃗ ′

N⃗ ′

B⃗′

 =

 0 k1 0
−εk1 0 k2
0 k2 0

 T⃗

N⃗

B⃗

 ,
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where g(T⃗ , T⃗ ) = 1, g(N⃗ , N⃗) = ε = ±1, g(B⃗, B⃗) = −ε, g(T⃗ , N⃗) = g(T⃗ , B⃗) =

g(N⃗ , B⃗) = 0 and k1 and k2 are curvature and torsion of the spacelike curve
α⃗(s), respectively. Here, ε determines the kind of spacelike curve α⃗(s). If ε = 1,

then α⃗(s) is a spacelike curve with spacelike principal normal N⃗ and timelike

binormal B⃗. If ε = −1, then α⃗(s) is a spacelike curve with timelike principal

normal N⃗ and spacelike binormal B⃗ [20].
Furthermore, for a timelike curve α⃗(s) in the space E3

1 , the following Frenet
formulae are given  T⃗ ′

N⃗ ′

B⃗′

 =

 0 k1 0
k1 0 k2
0 −k2 0

 T⃗

N⃗

B⃗

 ,
where g(T⃗ , T⃗ ) = −1, g(N⃗ , N⃗) = g(B⃗, B⃗) = 1, g(T⃗ , N⃗) = g(T⃗ , B⃗) = g(N⃗ , B⃗) =
0 and k1 and k2 are curvature and torsion of the timelike curve α⃗(s) respectively
[20].

3. Differential equations characterizing spacelike curves of constant
breadth in E3

1

In this section, we study the differential equations which characterize space-
like curves of constant breadth in Minkowski 3-space.

Let (C) be a unit speed spacelike curve of the class C3 with nonzero cur-

vature and torsion and assume that (C) has parallel tangents T⃗ and T⃗ ∗ in
opposite direction at the opposite points α and α∗ of the curve. If the chord
joining the opposite points of (C) is a double-normal, then (C) has constant
breadth, and conversely, if (C) is a spacelike curve of constant breadth, then
every normal of (C) is a double-normal. A simple closed spacelike curve (C)
of constant breadth having parallel tangents in opposite directions at opposite
points may be represented by the equation

(1) α⃗∗(s) = α⃗(s) +m1(s)T⃗ (s) +m2(s)N⃗(s) +m3(s)B⃗(s),

where mi(s), (1 ≤ i ≤ 3) are the differentiable functions of s which is arc
length of (C). Differentiating this equation with respect to s and using the
Frenet formulae of spacelike curve we obtain

dα⃗∗

ds
= T⃗ ∗ ds

∗

ds
=

(
1 +

dm1

ds
− εm2k1

)
T⃗ +

(
m1k1 +

dm2

ds
+m3k2

)
N⃗

+

(
m2k2 +

dm3

ds

)
B⃗.

Since T⃗ = −T⃗ ∗ at the corresponding points of (C), we have

(2)


1 + dm1

ds − εm2k1 = −ds∗

ds ,

m1k1 +
dm2

ds +m3k2 = 0,

m2k2 +
dm3

ds = 0.
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It is well known that the curvature of (C) is lim (∆φ/∆s) = (dφ/ds) = k1(s).
Here φ =

∫ s
0
k1(s)ds is the angle between the tangent of the curve (C) and a

given fixed direction at the point α⃗(s). The distance d between the opposite
points α and α∗ of the curve is the breadth of the curve and is constant, that

is, d2 =
∥∥∥d⃗∥∥∥2 = ∥α∗ − α∥2 = m2

1+εm
2
2−εm2

3 = const. Also, the vector d⃗ is the

double normal of the constant breadth curve (C). Hence (2) may be written
as follows:

(3) m2 =
1

ε
f (φ) , m′

2 = −m3ρk2, m
′
3 = −m2ρk2, m1 = 0,

or

(4) m′
1 = εm2, m

′
2 = −m1 −m3ρk2, m

′
3 = −m2ρk2,

which are the systems describing the spacelike curve (1) and here and in what
follows (′) denotes the differentiation with respect to φ. In (3) and (4), f(φ) =
ρ + ρ∗ and, ρ = 1

k1
and ρ∗ = 1

k∗1
denote the radius of curvatures at the points

α and α∗, respectively.
Let us consider the system (3) with m1 = 0. Here, eliminating first f(φ),

m2 and their derivatives, and then f(φ), m3 and their derivatives, respectively,
we obtain the following linear differential equations of second order

(5)

{
(ρk2)m

′′
2 − (ρk2)

′
m′

2 − (ρk2)
3
m2 = 0, ρk2 ̸= 0,

(ρk2)m
′′
3 − (ρk2)

′
m′

3 − (ρk2)
3
m3 = 0, ρk2 ̸= 0.

By changing the variable φ of the form ξ =
∫ φ
0
ρ (t) k2 (t) dt, these equations

can be transformed into the following differential equations with constant co-
efficients,

(6)
d2m2

dξ2
−m2 = 0 and

d2m3

dξ2
−m3 = 0

(See [5]). Then, the general solutions of the differential equations (6), become,
respectively,

(7)

 m2 = A cosh
∫ φ
0
ρk2dt+B sinh

∫ φ
0
ρk2dt,

m3 = C cosh
∫ φ
0
ρk2dt+D sinh

∫ φ
0
ρk2dt,

where A,B,C and D are constants. Substituting (7) into (3), we obtain A =
−B, C = −D, and so, the set of the solutions of the system (3), in the form

(8)



m1 = 0,

m2 = A cosh

∫ φ

0

ρk2dt+B sinh

∫ φ

0

ρk2dt,

m3 = −
(
B cosh

∫ φ

0

ρk2dt+A sinh

∫ φ

0

ρk2dt

)
.

Thus, the equation (1) is described.
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Now, let us return to the system (4). Eliminating m2, m3 and their deriva-
tives, we have the linear differential equation

(9) (ρk2)m
′′′
1 + (ρk2)

′
m′′

1 −
(
(ρk2)

3
+ (ρk2)

)
m′

1 − (ρk2)
′
m1 = 0, ρk2 ̸= 0.

On the other hand, replacing ρk2 = h(φ) into (9), we obtain Bernoulli’s
equation with unknown h. Solving the obtained equation, we can reduce (9)
to the nonlinear differential equation

(10) (ρk2)
−2

(m1 +m′′
1)

2
+m2

1 + (m′
1)

2
= C,

where C is constant. Following the same way, for m2 and m3, we have the
following differential equations:
(11)

(ρτ)
2
m′′′

3 − 2 (ρk2) (ρk2)
′
m′′

3

+
[
ε (ρk2)

2 − (ρk2)
4 − (ρk2) (ρk2)

′′
+ 2

(
(ρk2)

′)2]
m′

3 − (ρk2)
3
(ρk2)

′
m3 = 0

and

(12)
(ρk2)

′
m′′′

2 + (ρk2)
′′
m′′

2 + (ρk2)
′
[
ε− (ρk2)

2
]
m′

2

+
[
3 (ρk2) (ρk2)

′
+ (ρk2)

′′
[
ε− (ρk2)

2
]]
m2 = 0.

The statement (ρk2) in these equations may be decided by means of the
criterion in the next section. Hence, replacing the general solution of each one
of equations (9), (11) and (12) into (4), separately, and then adjusting the
arbitrary constants, we may find the solution set {m1,m2,m3}.

The case ρk2 = 0 will be given in Example 3.1.

3.1. A criterion for spacelike curves of constant breadth in Minkow-
ski 3-space E3

1

Let us assume that (C) is a spacelike curve of constant breadth and α⃗(s)
denotes the position vector of a generic point. Since (C) is a closed curve,
the position vector α⃗(s) must be a periodic function of period ω = 2π, where
ω is the total length of (C). Then the curvature k1(s) and torsion k2(s) are
also periodic of the same period. However, periodicity of k1(s) and k2(s) and
closeness of the curve are not sufficient to guarantee a spacelike space curve to
be constant breadth. That is, if a spacelike curve is closed curve (periodic), it
may be the curve of constant breadth or not. Therefore, to guarantee that a
spacelike curve is a constant breadth curve, we may use the system (4) charac-
terizing a spacelike curve of constant breadth and follow the similar way given
in [6].

For this purpose, first let us consider the following Frenet formulas at a
generic point on the spacelike curve (C),

(13)
d
−→
T

ds
= k1N⃗

dN⃗

ds
= −εk1

−→
T + k2B⃗,

dB⃗

ds
= k2N⃗ .
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Writing the formulas (13) in terms of φ and allowing for dφ
ds = k1 = 1

ρ we have

(14)
d
−→
T

dφ
= N⃗ ,

dN⃗

dφ
= −ε

−→
T + ρk2B⃗,

dB⃗

dφ
= ρk2N⃗ .

Furthermore we can write the Frenet vectors T⃗ , N⃗ , B⃗ in coordinate form as
follows

(15)
−→
T =

3∑
i=1

tie⃗i,
−→
N =

3∑
i=1

nie⃗i,
−→
B =

3∑
i=1

bie⃗i.

Since {T⃗ , N⃗ , B⃗} is the orthonormal base in E3
1 , and putting (15) and their

derivatives into (14), we have the systems of linear differential equations

(16)


dt1
dφ = n1,

dt2
dφ = n2,

dt3
dφ = n3

dn1

dφ = −εt1 + ρk2b1,
dn2

dφ = −εt2 + ρk2b2,
dn3

dφ = −εt3 + ρk2b3
db1
dφ = ρk2n1,

db2
dφ = ρk2n2,

db3
dφ = ρk2n3.

From (16), we find that {t1, n1, b1} , {t2, n2, b2} , {t3, n3, b3} are three indepen-
dent solutions of the following system differential equations:

(17)
dψ1

dφ
= ψ2,

dψ2

dφ
= −εψ1 + ρk2ψ3,

dψ3

dφ
= ρk2ψ2.

If the spacelike curve (C) is the curve of constant breadth, the system (17)
and (4) must be the same system. So, we observe that ψ1 = m1, ψ2 = m2,
ψ3 = m3. For brevity, we can write (4) or (17) in the form

(18)
dψ

dφ
= A(φ)ψ,

where

ψ =

 m1

m2

m3

 , A (φ) =

 0 1 0
−ε 0 ρk2
0 ρk2 0

 .
Obviously, (18) is a special case of the general linear differential equations

abbreviated to the form

(19)



dψ
dt = A (t)ψ,

ψ =


m1

m2

...
mn

 , A (t) =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

 , (3 ≤ n)

where aij (t) are assumed to be continuous and periodic of period ω (See [6,
15]). Let the initial conditions be ψi (0) = xi, (i = 1, 2, . . . , n). Let us take

x = [x1, x2, . . . , xn]
T
and

ψ (t, x) = [m1 (t, x)m2 (t, x) · · ·mn (t, x)]
T
.
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Then the equation (19) may be written in the form dψ
dt = A (t)ψ, ψ (0) = x

as is well known from [6], the solution ψ (t, x) of this equation is periodic of
period ω, if ∫ ω

0

A (ξ)ψ (ξ, x) dξ = 0

and

(20)


ψ (t, x) = {E +M (t)}x, (E = unit matrix) ,
M (t) = IA (t) + I(2)A (t) + · · ·+ I(n)A (t) + · · · ,
(IA) (t) ≡ I(I)A (t) =

∫ t
0
A (ξ) dξ,(

I(n)A
)
(t) =

∫ t
0
A (ξ)

(
I(n−1)A

)
(ξ) dξ, n > 1.

Furthermore, the following theorem is given in [6]:

Theorem 3.1. The equations dψ
dt = A (t)ψ possess a non-vanishing periodic

solution of period ω, if and only if det (M (ω)) = 0. In particular, in order that

the equations dψ
dt = A (t)ψ possess n linearly independent periodic solutions of

period ω, the necessary and sufficient condition is that M (ω) be a zero matrix.

Now, let us apply this theorem to the system (18). If M (ω) = 0, there exist

the unit vector functions
−→
T ,

−→
N,

−→
B of period ω, such that each set of functions

{ti, ni, bi} , (i = 1, 2, 3) form a solution of the equation (18) corresponding to
the initial conditions (Ai, Bi, Ci). The spacelike curve (C) can be described

α⃗(s) =

∫ s

0

T⃗ (s)ds or α⃗(φ) =

∫ φ

0

ρ(φ)T⃗ (φ)dφ.

Here, to find T⃗ , we can make use of the equation

(21)

 ti
ni
bi

 = {E +M (φ)}

 Ai
Bi
Ci

 , (i = 1, 2, 3)

which is established by (20). If we take the initial conditions as ti (0) = Ai,
ni (0) = Bi, bi (0) = Ci, (i = 1, 2, 3) such that (A1, A2, A3), (B1, B2, B3),
(C1, C2, C3) form an orthonormal frame, then from (21) we obtain

(22) ti = (1 +m11)Ai +m12Bi +m13Ci, (i = 1, 2, 3).

When the spacelike curve (C) is a curve of constant breadth, which is also
periodic of period ω, it is clear that

(23)

∫ ω

0

ρtidφ = 0.

Hence, form (22) and (23), we have

Ai

∫ ω

0

ρ (1 +m11) dφ+Bi

∫ ω

0

ρm12dφ+ Ci

∫ ω

0

ρm13dφ = 0; (i = 1, 2, 3).
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Since in this system the coefficient determinant ∆ ̸= 0, we obtain the equal-
ities

(24)

∫ ω

0

ρ (1 +m11) dφ = 0 =

∫ ω

0

ρm12dφ =

∫ ω

0

ρm13dφ,

which are the conditions for a spacelike curve to be constant breadth. Here,
we can take the period ω = 2π because of 0 ≤ φ ≤ 2π. Thus we establish the
following result:

Corollary 3.1. Let (C) be a spacelike curve in E3
1 such that ρ(φ) > 0 and

k2(φ) are continuous periodic functions of period ω. Then (C) is a spacelike
curve of constant breadth, and also periodic of period ω, if and only if

(25) M (ω) = 0,

∫ ω

0

ρ (1 +m11) dφ = 0 =

∫ ω

0

ρm12dφ =

∫ ω

0

ρm13dφ,

where

(26)


M (t) = IA (t) + I(2)A (t) + · · ·+ I(n)A (t) + · · · ,

A (t) =

 0 1 0
−ε 0 ρk2
0 ρk2 0


and mij (t) are the entries of the matrix M (t) .

By means of (20) and (26), the matrix M (t) can be constructed and each
mij involves infinitely many integrations. Hence, we can write the conditions
(25) in the following forms:
(27)

∫ ω

0

ρ(φ)dφ−
∫ ω

0

∫ φ

0

∫ t

0

ρ(φ)dpdtdφ

+

∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

∫ q

0

ρ(φ)
[
ε− h2 (q)

]
drdqdpdtdφ− · · · = 0,∫ ω

0

∫ φ

0

ρ(φ)dtdφ−
∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

ρ(φ) [ε− h (p)h (q)]dqdpdtdφ+ · · · = 0,∫ ω

0

∫ φ

0

∫ t

0

ρ(φ)h (t) dpdtdφ

−
∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

∫ q

0

ρ(φ)
[
ε− h2 (q)

]
h (t) drdqdpdtdφ+ · · · = 0,

where h (ξ) = ρ (ξ) τ (ξ).

Example 3.1. Let us consider the special case ρ = const. and k2 = const.
where ρk2 = h = const. In this case, from (24), we have

(28)


ω − εω

3

3! + ε
(
ε− ρ2k22

)
ω5

5! − ε
(
ε− ρ2k22

)2 ω7

7! · · · = 0,
ω2

2! −
(
ε− ρ2k22

)
ω4

4! +
(
ε− ρ2k22

)2 ω6

6! − · · · = 0,

k2

[
ω3

3! −
(
ε− ρ2k22

)
ω5

5! +
(
ε− ρ2k22

)2 ω7

7! − · · · = 0
]
,
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or

(29)


ρ2k22

(
ε− ρ2k22

) 1
2 ω − sin ε

(
ε− ρ2k22

) 1
2 ω = 0,

cos
(
ε− ρ2k22

) 1
2 ω = 1 or

(
ε− ρ2k22

) 1
2 ω = 2kπ, k ∈ Z

k2

[
sin

(
ε− ρ2k22

) 1
2 ω −

(
ε− ρ2k22

) 1
2 ω

]
= 0,

where ω = 2kπ if ε = 1, and ω = −2kπi if ε = −1.

It is seen that all of the equalities (28) or (29) are satisfied, simultaneously,
if and only if ρk2 = 0, that is, ρ = const. > 0 and k2 = 0. Therefore, only ones
with ρ = const. > 0 and k2 = 0 of the spacelike curves with ρ = const. > 0 and
k2 = const. are curves of constant breadth, which are circles.

Now let us construct the relation characterizing these circles. Since ρk2 = 0,
system (4) becomes

(30) m′
1 = εm2, m

′
2 = −m1 − ρk2m3, m

′
3 = −ρk2m2.

From (30), the equations with the unknowns m1, m2 and m3 can be written
as follows

(31) εm1 +m′′
1 = 0, εm2 +m′′

2 = 0, m′
3 = 0.

Let now find the general solutions of the system (31) which has two general
solutions according to the sign of ε.

If ε = 1, the general solution is

(32)

 m1 = A cosφ+B sinφ
m2 = D cosφ+ E sinφ
m3 = C,

where A,B,C,D and E are arbitrary constants.
Replacing (32) into (30), we haveA = −E, B = D, and thus

(33) {m1 = A cosφ+B sinφ, m2 = B cosφ−A sinφ, m3 = C}
which is the solution set of the system (31) with ε = 1.

Consequently, replacing (33) into (1), we obtain the equation

α⃗∗(φ) = α⃗(φ) + (A cosφ+B sinφ) T⃗ + (B sinφ− E cosφ) N⃗ + CB⃗,

which represents the circles with the diameter d=∥α∗−α∥=
(∣∣D2+E2−C2

∣∣) 1
2 .

In this case, a pair of opposite points of the curve is (α∗(φ), α(φ)) for φ in
0 ≤ φ ≤ 2π.

If ε = −1, the general solution of the system (31) is

(34)

 m1 = A coshφ+B sinhφ
m2 = D coshφ+ E sinhφ
m3 = C,

where A,B,C,D and E are arbitrary constants.
Replacing (34) into (30), we haveA = −E, B = −D and thus

(35) {m1 = A coshφ+B sinhφ, m2 = −B coshφ−A sinhφ, m3 = C} ,
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which is the solution set of the system (31) with ε = −1.
Consequently, replacing (35) into (1), we obtain the equation

α⃗∗(φ) = α⃗(φ) + (A coshφ+B sinhφ) T⃗ + (−A coshφ−B sinhφ) N⃗ + CB⃗,

which represents the circles with the diameter d=∥α∗−α∥=
(∣∣A2−B2+C2

∣∣) 1
2 .

In this case, a pair of opposite points of the curve is (α∗(φ), α(φ)) for φ in
0 ≤ φ ≤ 2π.

4. Differential equations characterizing timelike curves of constant
breadth in E3

1

In this section, we study the differential equations which characterize time-
like curves of constant breadth in Minkowski 3-space E3

1 .
Let (C) be a unit speed timelike curve of the class C3 with nonzero curvature

and torsion and assume that (C) has parallel tangents T⃗ and T⃗ ∗ in opposite
direction at the opposite points α and α∗ of the curve. If the chord joining the
opposite points of (C) is a double-normal, then (C) has constant breadth, and
conversely, if (C) is a timelike curve of constant breadth, then every normal
of (C) is a double-normal. A simple closed timelike curve (C) of constant
breadth having parallel tangents in opposite directions at opposite points may
be represented by the equation

(36) α⃗∗(s) = α⃗(s) +m1(s)T⃗ (s) +m2(s)N⃗(s) +m3(s)B⃗(s),

where mi(s) (1 ≤ i ≤ 3) are the differentiable functions of s which is arc length
of (C). Differentiating this equation with respect to s and using the Frenet
formulae of timelike curve we obtain

dα⃗∗

ds
= T⃗ ∗ ds

∗

ds
=

(
1− dm1

ds
+m2k1

)
T⃗ +

(
m1k1 +

dm2

ds
−m3k2

)
N⃗

+

(
m2k2 +

dm3

ds

)
B⃗.

Since T⃗ = −T⃗ ∗ at the corresponding points of (C) we have

(37)


1− dm1

ds +m2k1 = −ds∗

ds ,

m1k1 +
dm2

ds −m3k2 = 0,

m2k2 +
dm3

ds = 0.

By considering the curvature of (C) defined by lim (∆φ/∆s) = (dφ/ds) =
k1(s), we have φ =

∫ s
0
k1(s)ds which is the angle between the tangent of the

curve (C) and a given fixed direction at the point α(s). The distance d between
the opposite points α and α∗ of the curve is the breadth of the curve and

is constant, that is, d2 = ∥d⃗∥2 = ∥α∗ − α∥2 = −m2
1 + m2

2 + m2
3 = const.

Furthermore, since the normal vector d⃗ is a spacelike vector, from last equality,
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we have m2
2+m

2
3 > m2

1. Also, the vector d⃗ is the double normal of the constant
breadth curve (C). Hence (37) may be written as follows:

(38) m2 = −f (φ) , m′
2 = m3ρk2, m

′
3 = −m2ρk2, m1 = 0,

or

(39) m′
1 = −m2, m

′
2 = −m1 +m3ρk2, m

′
3 = −m2ρk2,

which are the systems describing the curve (36) and here and in what follows
(′) denotes the differentiation with respect to φ. In (35) and (36), f(φ) = ρ+ρ∗

and, ρ = 1
k1

and ρ∗ = 1
k∗1

denote the radius of curvatures at the points α and

α∗, respectively.
Let us consider the system (38) with m1 = 0. Here, eliminating first

f(φ), m2 and their derivatives, and then f(φ), m3 and their derivatives, re-
spectively, we obtain the following linear differential equations of second order

(40)

{
(ρk2)m

′′
2 + (ρk2)

3
m2 − (ρk2)

′
m′

2 = 0, ρk2 ̸= 0,

(ρk2)m
′′
3 + (ρk2)

3
m3 − (ρk2)

′
m′

3 = 0, ρk2 ̸= 0.

By changing the variable φ of the form ξ =
∫ φ
0
ρ (t) τ (t) dt, these equations

can be transformed into the following differential equations with constant co-
efficients,

(41)
d2m2

dξ2
+m2 = 0 and

d2m3

dξ2
+m3 = 0

(See [5]). Then, the general solutions of the differential equations (41), become,
respectively,

(42)

{
m2 = A cos

∫ φ
0
ρk2dt+B sin

∫ φ
0
ρk2dt,

m3 = C cos
∫ φ
0
ρk2dt+D sin

∫ φ
0
ρk2dt,

where A,B,C and D are constants. Substituting (42) into (38), we obtain
A = −D, B = C and so, the set of the solutions of the system (38), in the
form

(43)



m1 = 0,

m2 = A cosh

∫ φ

0

ρk2dt+B sinh

∫ φ

0

ρk2dt,

m3 =

(
B cosh

∫ φ

0

ρk2dt−A sinh

∫ φ

0

ρk2dt

)
.

Thus, the equation (36) is described.
Now, let us return to the system (42). Eliminating m2, m3 and their deriva-

tives, we have the linear differential equation

(44) (ρk2)m
′′′
1 − (ρk2)

′
m′′

1 +
(
(ρk2)

3 − (ρk2)
)
m′

1 + (ρk2)
′
m1 = 0; ρk2 ̸= 0.
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On the other hand, replacing ρk2 = h(φ) into (44), we obtain Bernoulli’s
equation with unknown h. Solving the obtained equation, we can reduce (44)
to the nonlinear differential equation

(45) (ρk2)
−2

(m′′
1 −m1)

2
+m2

1 − (m′
1)

2
= C,

where C is constant. Following the same way for m2 and m3, we have the
following differential equations:
(46)

(ρk2)
2
m′′′

3 − 2 (ρk2) (ρk2)
′
m′′

3

+
[
(ρk2)

2
+ (ρk2)

4 − (ρk2) (ρk2)
′′
+ 2

(
(ρk2)

′)2]
m′

3 + (ρk2)
3
(ρk2)

′
m3 = 0

and

(47)
(ρk2)

′
m′′′

2 − (ρk2)
′′
m′′

2 + (ρk2)
′
[
(ρk2)

2 − 1
]
m′

2

+
[
3 (ρk2)

(
(ρk2)

′)2
+ (ρk2)

′′
[
1 + (ρk2)

2
]]
m2 = 0.

The statement (ρk2) in these equations may be decided by means of the
criterion in the next section. Hence, replacing the general solution of each one
of equations (44), (46) and (47) into (39), separately, and then adjusting the
arbitrary constants, we may find the solution set {m1,m2,m3}.

4.1. A criterion for timelike curves of constant breadth in Minkowski
3-space

Let us assume that (C) is a timelike curve of constant breadth and α⃗(s)
denotes the position vector of a generic point. Since (C) is a closed curve, the
position vector α⃗(s) must be a periodic function of period ω = 2π, where ω is
the total length of (C). Then the curvature k1(s) and torsion k2(s) are also
periodic of the same period. However, similar to the case given for spacelike
curves, periodicity of k1(s) and k2(s) and closeness of the curve are not sufficient
to guarantee a timelike space curve to be constant breadth. Therefore, to
guarantee a timelike curve to be constant breadth, we may use the system (39)
characterizing a timelike curve of constant breadth and follow the similar way
as [6].

For this purpose, first let us consider the Frenet formulas of timelike curve
given by

(48)
d
−→
T

ds
= k1N⃗

dN⃗

ds
= k1

−→
T + k2B⃗,

dB⃗

ds
= −k2N⃗ ,

at a generic point on the timelike curve (C). Writing the formulas (48) in terms

of φ and taking dφ
ds = k1 = 1

ρ , we have

(49)
d
−→
T

dφ
= N⃗ ,

dN⃗

dφ
=

−→
T + ρk2B⃗,

dB⃗

dφ
= −ρk2N⃗ .
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Let write T⃗ , N⃗ , B⃗ in coordinate forms as follows,

(50)
−→
T =

3∑
i=1

tie⃗i,
−→
N =

3∑
i=1

nie⃗i,
−→
B =

3∑
i=1

bie⃗i.

Since {T⃗ , N⃗ , B⃗} is the orthonormal base in E3
1 , putting (50) and their deriva-

tives into (49), we have the systems of linear differential equations

(51)


dt1
dφ = n1,

dt2
dφ = n2,

dt3
dφ = n3

dn1

dφ = t1 + ρk2b1,
dn2

dφ = t2 + ρk2b2,
dn3

dφ = t3 + ρk2b3
db1
dφ = −ρk2n1, db2

dφ = −ρk2n2, db3
dφ = −ρk2n3.

From (51), we find that {t1, n1, b1} , {t2, n2, b2} , {t3, n3, b3} are three indepen-
dent solutions of the following system of differential equations:

(52)
dψ1

dφ
= ψ2,

dψ2

dφ
= ψ1 + ρk2ψ3,

dψ3

dφ
= −ρk2ψ2.

If the timelike curve (C) is the curve of constant breadth, the system (52)
and (39) must be the same system; so we observe that ψ1 = m1, ψ2 = m2,
ψ3 = m3. For brevity, we can write (39) or (52) in the form

(53)
dψ

dφ
= A (φ)ψ,

where

ψ =

 m1

m2

m3

 , A (φ) =

 0 1 0
1 0 ρk2
0 −ρk2 0

 .
Obviously, (53) is a special case of the general linear differential equations
abbreviated to the form

(54)



dψ
dt = A (t)ψ,

ψ =


m1

m2

...
mn

 , A (t) =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

 , (3 ≤ n)

where aij (t) are assumed to be continuous and periodic of period ω (See [6,
15]). Let the initial conditions be ψi (0) = xi, (i = 1, 2, . . . , n). Let us take

x = [x1, x2, . . . , xn]
T
and

ψ (t, x) = [m1 (t, x)m2 (t, x) · · ·mn (t, x)]
T
.

Then the equation (54) may be written in the form dψ
dt = A (t)ψ, ψ (0) = x

as is well known from [6], the solution ψ (t, x) of this equation is periodic of
period ω, if ∫ ω

0

A (ξ)ψ (ξ, x) dξ = 0
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and

(55)


ψ (t, x) = {E +M (t)}x, (E = unit matrix) ,
M (t) = IA (t) + I(2)A (t) + · · ·+ I(n)A (t) + · · · ,
(IA) (t) ≡ I(I)A (t) =

∫ t
0
A (ξ) dξ,(

I(n)A
)
(t) =

∫ t
0
A (ξ)

(
I(n−1)A

)
(ξ) dξ, n > 1.

Furthermore, from [6] we have Theorem 3.1 again.
Now let us apply Theorem 3.1 to the system (53). If M (ω) = 0, there exist

the unit vector functions
−→
T ,

−→
N,

−→
B of period ω, such that each set of functions

{ti, ni, bi}, (i = 1, 2, 3) form a solution of the equation (53) corresponding to
the initial conditions (Ai, Bi, Ci). The timelike curve (C) can be described

α⃗(s) =

∫ s

0

T⃗ (s)ds or α⃗(φ) =

∫ φ

0

ρ(φ)T⃗ (φ)dφ.

Here, to find T⃗ , we can make use of the equation

(56)

 ti
ni
bi

 = {E +M (φ)}

 Ai
Bi
Ci

 , (i = 1, 2, 3)

which is established by (55). If we take the initial conditions as ti (0) = Ai,
ni (0) = Bi, bi (0) = Ci; (i = 1, 2, 3) such that (A1, A2, A3) , (B1, B2, B3),
(C1, C2, C3) form an orthonormal frame, then from (56) we obtain

(57) ti = (1 +m11)Ai +m12Bi +m13Ci, (i = 1, 2, 3).

When the timelike curve (C) is a curve of constant breadth, which is also
periodic of period ω, it is clear that

(58)

∫ ω

0

ρtidφ = 0.

Hence, form (57) and (58), we have

Ai

∫ ω

0

ρ (1 +m11) dφ+Bi

∫ ω

0

ρm12dφ+ Ci

∫ ω

0

ρm13dφ = 0; (i = 1, 2, 3).

Since in this system the coefficient determinant ∆ ̸= 0, we obtain the equalities

(59)

∫ ω

0

ρ (1 +m11) dφ = 0 =

∫ ω

0

ρm12dφ =

∫ ω

0

ρm13dφ,

which are the conditions for a timelike curve to be constant breadth. Here, we
can take the period ω = 2π because of 0 ≤ φ ≤ 2π. Thus we establish the
following result:

Corollary 4.1. Let (C) be a timelike curve in E3
1 , such that ρ(φ) > 0 and

k2(φ) are continuous periodic functions of period ω. Then (C) is a timelike
curve of constant breadth, and also periodic of period ω, if and only if

(60) M (ω) = 0,

∫ ω

0

ρ (1 +m11) dφ = 0 =

∫ ω

0

ρm12dφ =

∫ ω

0

ρm13dφ,
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where

(61)


M (t) = IA (t) + I(2)A (t) + · · ·+ I(n)A (t) + · · · ,

A (t) =

 0 1 0
1 0 ρk2
0 −ρk2 0


and mij (t) are the entries of the matrix M (t) .

By means of (55) and (61), the matrix M (t) can be constructed and each
mij involves infinitely many integrations. Hence we can write the conditions
(60) in the following forms:
(62)

∫ ω

0

ρ(φ)dφ+

∫ ω

0

∫ φ

0

∫ t

0

ρ(φ)dpdtdφ

+

∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

∫ q

0

ρ(φ)
[
1− h2 (q)

]
drdqdpdtdφ− · · · = 0,∫ ω

0

∫ φ

0

ρ(φ)dtdφ+

∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

ρ(φ) [1− h (p)h (q)]dqdpdtdφ+ · · · = 0,∫ ω

0

∫ φ

0

∫ t

0

ρ(φ)h (t) dpdtdφ

+

∫ ω

0

∫ φ

0

∫ t

0

∫ p

0

∫ q

0

ρ(φ)
(
1− h2 (q)

)
h (t) drdqdpdtdφ+ · · · = 0,

where h (ξ) = ρ (ξ) k2 (ξ).

Example 4.1. Let us consider the case ρ = const. and k2 = const., where
ρk2 = h = const. In this case, from (59), we have

(63)


ω + ω3

3! +
(
1− ρ2k22

)
ω5

5! +
(
1− ρ2k22

)2 ω7

7! . . . = 0
ω2

2! +
(
1− ρ2k22

)
ω4

4! +
(
1− ρ2k22

)2 ω6

6! + . . . = 0

k2

[
ω3

3! +
(
1− ρ2k22

)
ω5

5! +
(
1− ρ2k22

)2 ω7

7! − . . . = 0
]

or

(64)


ρ2k22

(
1− ρ2k22

) 1
2 ω − sinh

(
1− ρ2k22

) 1
2 ω = 0,

cosh
(
1− ρ2k22

) 1
2 ω = 1 or

(
1− ρ2k22

) 1
2 ω = 0,

k2

[
sinh

(
1− ρ2k22

) 1
2 ω −

(
1− ρ2k22

) 1
2 ω

]
= 0,

where k2 ̸= 0, ω ̸= 0 and ρ = ± 1
k2
.

It is seen that all of the equalities (63) or (64) are satisfied, simultaneously,
if and only if k2 ̸= 0, ω ̸= 0 and ρ = ± 1

k2
. Therefore, only ones with ρ = ± 1

k2
=

const. of the timelike curves are curves of constant breadth, which are timelike
helices with the property that k1 = ±k2 = const.

Now let us construct the relation characterizing these helices.
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When ρ = 1
k2

= const., the system (39) becomes

(65) m′
1 = −m2, m′

2 = −m1 +m3, m′
3 = −m2,

The general solutions of them are, respectively,

(66)

 m1 = c1
2 φ

2 + c2φ+ c3
m2 = −c1φ− c2
m3 = c1

2 φ
2 + c2φ+ (c3 − c1),

where c1, c2, c3 are arbitrary constants.
Consequently, replacing (66) into (36), we obtain the equation

α⃗∗(φ) = α⃗(φ) +
(c1
2
φ2 + c2φ+ c3

)
T⃗

+ (−c1φ− c2) N⃗ +
(c1
2
φ2 + c2φ+ (c3 − c1)

)
B⃗,

which gives the constant distance d =
(∣∣c21 + c22 − 2c1c3

∣∣) 1
2 between the points

α∗(φ) and α(φ).
When ρ = − 1

k2
= const., the system (39) becomes

(67) m′
1 = −m2, m′

2 = −m1 −m3, m′
3 = m2.

The general solutions of them are

(68)

 m1 = − c1
2 φ

2 − c2φ
m2 = c1φ+ c2
m3 = c1

2 φ
2 + c2φ− c1

respectively, where c1, c2, c3 are arbitrary constants.
Consequently, replacing (68) into (36), we obtain the equation

α⃗∗(φ) = α⃗(φ) +
(
−c1

2
φ2 − c2φ

)
T⃗ + (c1φ+ c2) N⃗ +

(c1
2
φ2 + c2φ− c1

)
B⃗,

which gives the constant distance d =
(
c21 + c22

) 1
2 between the points α∗(φ) and

α(φ).

5. Conclusion

In this paper, the differential equations characterizing the spacelike and
timelike curves of constant breadth in Minkowski 3-space E3

1 are obtained.
Furthermore, a criterion for a spacelike or a timelike curve to be the curve
of constant breadth in E3

1 is given. As an example, the obtained results are
applied to the case ρ = const. and k2 = const., and are discussed.
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