DOI QR코드

DOI QR Code

THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18

  • Wang, Fei (Department of Mathematics National University of Singapore)
  • Received : 2010.04.09
  • Published : 2011.07.01

Abstract

Log Enriques surface is a generalization of K3 and Enriques surface. We will classify all the rational log Enriques surfaces of rank 18 by giving concrete models for the realizable types of these surfaces.

Keywords

References

  1. M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531-545. https://doi.org/10.2307/1970716
  2. M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. https://doi.org/10.2307/1970717
  3. K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces. II, Tohoku Math. J. (2) 50 (1998), no. 3, 419-436. https://doi.org/10.2748/tmj/1178224938
  4. K. Oguiso and D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z. 231 (1999), no. 1, 23-50. https://doi.org/10.1007/PL00004724
  5. T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geom- etry, pp. 119-136. Iwanami Shoten, Tokyo, 1977.
  6. T. Shioda and H. Inose, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), no. 6, 1277-1297. https://doi.org/10.1353/ajm.1996.0052
  7. K. Ueno, A remark on automorphisms of Enriques surfaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 23 (1976), no. 1, 149-165.
  8. D.-Q. Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), no. 2, 419-466. https://doi.org/10.1215/kjm/1250519795
  9. D.-Q. Zhang, Logarithmic Enriques surfaces. II, J. Math. Kyoto Univ. 33 (1993), no. 2, 357- 397. https://doi.org/10.1215/kjm/1250519265

Cited by

  1. Cylinders in del Pezzo Surfaces 2016, https://doi.org/10.1093/imrn/rnw063