DOI QR코드

DOI QR Code

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds

다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회

  • Received : 2011.02.22
  • Accepted : 2011.03.14
  • Published : 2011.03.31

Abstract

Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

다단 환원형 유동층 반응기(상승관: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)에서의 수력학적 특성을 연구하였다. 층물질로는 glass beads($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Galdart B)를 사용하였다. Batch 상태에서 고체흐름량을 측정하기 위하여 전자저울을 사용하여 누적된 무게로 계산하였다. 연속공정에서는 고체순환량를 측정하기 위하여 고체가 순환상태에서 사이클론 하단의 3-way 밸브를 이용하여 일정시간에 누적된 무게로 계산하였다. 또한 정상상태에서 가열된 입자가 열전대를 통과하는 시간을 측정하여 고체순환량을 계산하였다. 고체의 흐름량은 주입 기체의 유속($1.2{\sim}2.6U_{mf}$)과 층높이(z, 0.24~0.68 m)가 증가함에 따라 2.2 에서 23.4 kg/s로 증가하였다. 이때 고체체류시간은 440에서 1,438 s까지 변화하였다. 상승관내의 고체 체류량을 확인하기 위하여 각 구간에서의 압력강하를 측정하여 고체 체류량을 계산하였다. 본 연구에서 얻어진 고체체류량 분포는 end effect를 갖는 exponential decay model 의 형태로 나타났다. 상단 유동층에서 중단 유동층으로의 기체 우회을 확인하기 위하여 상단 유동층으로 주입되는 공기에 일정 조성의 $CO_2$ 추적기체를 주입한 후, 기체분석기를 이용하여 중단 유동층의 배출기체중 $CO_2$가 우회되는 양을 측정하였다. 측정된 기체우회(gas bypassing)양은 2.6% 미만으로 그 영향이 크지 않는 것으로 판단하였다.

Keywords

References

  1. Yerushalmi, J., "Circulating Fluidized Bed Technol.," eds. by P. Basu, Pergamon Press, New York, 1986 pp. 97-97.
  2. Kim, S. W., "A Characteristics of Solid Recycle System with Loop-seal in a Circulating Fluidized Bed," Theories and Applications of Chem. Eng., 2(2), 2339-2342 (1996).
  3. Shun, D. W., "Study of a Nonmechanical Solid Valve(Loop Seal)," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 37(6), 925-929 (1999).
  4. Grace, J. R., Avidan, A. A., and Knowlton T. M., Circulating Fluidized Beds, Blackie Academic & Professional, London, New York, 1996, pp. 242-242.
  5. Kim, S. W., "Effect of pressure on Solid Flow Characteristics in Recycle System of a Circulating Fluidized Bed," Korean Chem. Eng. Res., 48(2), 1-7 (2010).
  6. Ahn, H. S., and Lee, W. J., "Solid Circulation and Gas Bypassing in an Internally Circulating Fluidized Bed with an Orifice-Type Draft Tube," Korean J. Chem. Eng., 16(5), 618- 623 (1999). https://doi.org/10.1007/BF02708141
  7. Kim, S. W., "Solid Recycle Characteristics of Loop-seals in a Circulating Fluidized Bed," Chem. Eng. Technol., 24, 843- 849 (2001). https://doi.org/10.1002/1521-4125(200108)24:8<843::AID-CEAT843>3.0.CO;2-D
  8. Kunii, D., and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann Series in Chemical Engineering, Boston, 1990, p. 377.
  9. Brereton, C. M. H., "Fluid Mechanics of High Velocity Fluidized Beds," Ph. D. Dissertation, University of British Columbia, Vancouver, 1987.
  10. Kunii, D., and Levenspiel, O., "Entrainment of Solids from Fluidized Beds I. Hold-up of Solids in the Freeboard, II. Operation of Fast Fluidized Beds," Powder Technol., 61, 193-206 (1990). https://doi.org/10.1016/0032-5910(90)80155-R
  11. Smolder, K., and Baeyens, J., "Gas Fluidized Beds Operating at High Velocities: a Critical Review of Occurring Regimes," Powder Technol., 119, 269-291 (2001). https://doi.org/10.1016/S0032-5910(01)00267-4
  12. Song, B. H., and Kim, Y. T., "Circulation of Solid and Gas Bypassing in an Internally Circulating Fluidized Bed with a Draft Tube," Chem. Eng. J., 68, 115-122 (1997). https://doi.org/10.1016/S1385-8947(97)00061-2