DOI QR코드

DOI QR Code

Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle

수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구

  • 이무연 (자동차부품연구원 그린카 파워트레인 연구본부) ;
  • 원종필 (자동차부품연구원 그린카 파워트레인 연구본부) ;
  • 조중원 (자동차부품연구원 그린카 파워트레인 연구본부) ;
  • 이호성 (자동차부품연구원 그린카 파워트레인 연구본부)
  • Received : 2011.11.27
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

Keywords

References

  1. T. Yamashita, T. Ishikawa, H. Shimonosono, M. Yamada, and M. Iwasaki, "The Development of the Cooling System for FCV", 2004 JAMA annual conference, No.88-04, 2004.
  2. J. Hager, and L. Schickmair, "Fuel Cell Vehicle Thermal Management System Simulation in Contrast to Conventional Vehicle Concepts", 2005 SAE International.
  3. 김범주, 김도형, 임의천, "75kW급 연료전지 시스템의 이젝터 설계 및 시험", 한국수소 및 신에너지학회논문집 제22권, 제5호, pp. 678-685.
  4. H. Mattew, L. David, A. David, and B. Andrew, "PEM Fuel Cell System Solutions for Transportation", SAE 2000 World Congress, No.2000-01-0373, 2000.
  5. M. Kilic, and O. Kaynakli, "Second Law- Based Thermodynamic Analysis of Waterlithium Bromide Absorption Refrigeration System", Energy, Vol. 32, No. 8, 2007, pp. 1505-1512. https://doi.org/10.1016/j.energy.2006.09.003
  6. A. Bejan, "The Thermodynamic Design of Heat and Mass Transfer Processes and Devices", International Journal of Heat and Fluid Flow, Vol. 8, No. 4, 1987, pp. 258-276. https://doi.org/10.1016/0142-727X(87)90062-2
  7. G. Narayan, H. John, V. Lienhard, and M. Zubair, "Entropy Generation Minimization of Combined Heat and Mass Transfer Devices", International Journal of Thermal Sciences, Vol. 49, 2010, pp. 2057-2066. https://doi.org/10.1016/j.ijthermalsci.2010.04.024