DOI QR코드

DOI QR Code

그래핀과 Zn-Al 이중층상 수산화물 복합체의 제조 및 특성분석

Preparation and Characterization of Graphene/Zn-Al Layered Double Hydroxide Composites

  • 이종희 (충주대학교 공과대학 나노고분자공학과) ;
  • 고일웅 (충주대학교 공과대학 나노고분자공학과) ;
  • 김기영 (한국생산기술연구원 바이오나노섬유 융합연구그룹) ;
  • 임정혁 (충주대학교 공과대학 나노고분자공학과) ;
  • 김경민 (충주대학교 공과대학 나노고분자공학과)
  • Lee, Jong-Hee (Department of Polymer Science and Engineering, Chungju National University) ;
  • Ko, Yl-Woong (Department of Polymer Science and Engineering, Chungju National University) ;
  • Kim, Ki-Young (Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology) ;
  • Lim, Jung-Hyurk (Department of Polymer Science and Engineering, Chungju National University) ;
  • Kim, Kyung-Min (Department of Polymer Science and Engineering, Chungju National University)
  • 투고 : 2011.11.23
  • 심사 : 2011.12.14
  • 발행 : 2011.12.30

초록

그래파이트 옥사이드(GO)를 tetramethylammonium hydroxide (TMAOH)수용액을 이용하여 나노 크기로 분산되어 박리된 그래파이트 옥사이드(Exfoliated Graphite Oxide: EGO)를 제조하였다. 얻어진 EGO를 $Zn(NO_3)_2{\cdot}6H_2O$, $Al(NO_3)_3{\cdot}9H_2O$, urea, trisodium citrate의 혼합용액에 넣어 격렬히 교반 후 고압멸균기에서 열수 처리하여 동시에 환원된 그래핀(RGO)과 Zn-Al 이중층상 수산화물(LDH)의 나노 복합재료를 제조하였다. 즉, EGO의 표면에 두 개의 금속이온이 흡착된 후 열수처리 환원을 통하여 Zn-Al 이중층상 수산화물이 RGO의 표면에 자유롭게 성장하여 복합화 되었다. 얻어진 그래핀/Zn-Al LDH의 구조 및 형태와 열적 특성은 FE-SEM, EDX, TEM, FT-IR, XRD, TGA와 DSC를 통하여 분석하였다.

Exfoliated graphite oxide (EGO) was prepared by graphite oxide in an aqueous solution of TMAOH. The hybrid graphene/Zn-Al LDH material was fabricated by the hydrothermal reduction of the solution of EGO, $Zn(NO_3)_2{\cdot}6H_2O$, $Al(NO_3)_3{\cdot}9H_2O$, urea, and trisodium citrate. That is, metal ions were absorbed on the surface of EGO, and Zn-Al LDH material was randomly dispersed on the surface of graphene along with a reduction process of EGO to graphene by hydrothermal treatment. The composition, morphology, and thermal property of the obtained graphene-based hybrid material were studied by FE-SEM, EDX, TEM, FT-IR, XRD, TGA, and DSC.

키워드

참고문헌

  1. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. J. Wu, W. Pisula, and K. Mullen, Chem. Rev., 107, 718 (2007). https://doi.org/10.1021/cr068010r
  3. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201, (2005). https://doi.org/10.1038/nature04235
  4. Y. Matsuo, K. Tahara, and Y. Sugie, Carbon, 35, 113 (1997). https://doi.org/10.1016/S0008-6223(96)00123-6
  5. H. Li, G. Zhu, Z. H. Liu, Z. Yang, and Z. Wang, Carbon, 48, 4391 (2010). https://doi.org/10.1016/j.carbon.2010.07.053
  6. R. Muszynski, B. Seger, and P. V. Kamat, J. Phys. Chem. C, 112, 5263 (2008). https://doi.org/10.1021/jp800977b
  7. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487 (2008). https://doi.org/10.1021/nn800251f
  8. J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, ACS Nano, 2, 1825 (2008). https://doi.org/10.1021/nn800244k
  9. D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, and H. M. Cheng, ACS Nano, 3, 1745 (2009). https://doi.org/10.1021/nn900297m
  10. Y. Si and E. T. Samulski, Chem. Mater, 20, 6792 (2008). https://doi.org/10.1021/cm801356a
  11. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Ziraney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  12. T. Ramanaathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera- alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'homme, and L. C. Brinson, Nat. Nanotech, 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  13. X. Wang, L. J. Zhi, and K. Muellen, Nano Lett, 8, 323 (2008). https://doi.org/10.1021/nl072838r
  14. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Nano Lett, 7, 1888 (2007). https://doi.org/10.1021/nl070477+
  15. L. Li, R. Z. Ma, Y. Ebina, N. Iyi, and T. Sasaki, Chem. Mater, 17, 4386 (2005). https://doi.org/10.1021/cm0510460
  16. Z. P. Liu, R. Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, and T. Sasaki, J. Am. Chem. Soc., 128, 4872 (2006). https://doi.org/10.1021/ja0584471
  17. D. Yan, J. Lu, M. Wei, J. B. Han, J. Ma, F. Li, D. G. Evans, and X. Duan, Angew. Chem. Int. Ed, 48, 3073 (2009). https://doi.org/10.1002/anie.200900178
  18. B. J. Han, J. Lu, M. Wei, Z. L. Wang, and X. Duan, Chem. Commun., 41, 5188 (2008).
  19. X. Xiang, H. I. Hima, H. Wang, and F. Li, Chem. Mater., 20, 1173 (2008). https://doi.org/10.1021/cm702072t
  20. P. S. Kumbhar, J. Sanchez-Valente, J. M. M. Millet, and F. Figueras, J. Catal., 191, 467 (2000). https://doi.org/10.1006/jcat.2000.2827
  21. F. Li, J. Liu, D. G. Evans, and X. Duan, Chem. Mater., 16, 1597 (2004). https://doi.org/10.1021/cm035248c
  22. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano., 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  23. F. Kovanda, T. Grygar, and V. Dornicák, Solid State Sci., 5, 1019 (2003). https://doi.org/10.1016/S1293-2558(03)00129-8
  24. J. Wu, X. Shen, L. Jiang, K. Wang, and K. Chen, Appl. Surf. Sci., 256, 2826 (2010). https://doi.org/10.1016/j.apsusc.2009.11.034