DOI QR코드

DOI QR Code

암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid

  • 김경훈 (금오공과대학교 기계공학부)
  • Kim, Kyoung-Hoon (School of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2010.10.28
  • 심사 : 2011.01.31
  • 발행 : 2011.03.10

초록

The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

키워드

참고문헌

  1. Prisyazhniuk, V. A., 2008, Alternative trends in development of thermal power plant, Applied Thermal Engineering, Vol. 28, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  2. Kim, K. H., Kim, S. W. and Ko, H. J., 2010, Study on the Rankine cycle using ammoniawater mixture as working fluid for use of lowtemperature waste heat, Trans. Korean Hydrogen and New Energy, Vol. 21, pp. 570-579(Korean).
  3. Ibrahim, O. M., 1996, Design consideration for ammonia-water Rankine cycle, Energy, Vol. 21, pp. 835-841. https://doi.org/10.1016/0360-5442(96)00046-1
  4. Zamfirescu, C., Dincer, I., 2008, Thermo-dynamic analysis of a novel ammonia-water trilateral Rankine cycle, Thermo-chemica Acta, Vol. 477, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
  5. Roy, P., Desilets, M., Galanis, N., Nesreddine, H., and Cayer, E., 2010, Thermo-dynamic analysis of a power cycle using a low-temperature source and a binary NH3-H2O mixture as working fluid, Int. J. Thermal Sci., Vol. 49, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  6. Lolos, P. A. and Rogdakis, E. D., 2009, A Kalina power cycle driven by renewable energy sources, Energy, Vol. 34, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
  7. Ogriseck, S., 2009, Integration of Kalina cycle in a combined heat and power plant, a case study, Applied Ther. Eng., Vol. 29, pp. 2843-2848. https://doi.org/10.1016/j.applthermaleng.2009.02.006
  8. Yang, T., Chen, G. J., Yan, W., and Guo, T. M., 1997, Extension of the Wong-Sandler mixing rule to the three-parameter Patel-teja equation of stste : Application up to the nearcritical region, Chem. Eng. J., Vol. 67, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  9. Xu, F. and Goswami, D. Y., 1999, Thermodynamic properties of ammonia-water mixtures for power-cycle application, Energy, Vol. 24, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9
  10. Smith, J. M., Van Ness, H. C. and Abbott, M. M., 2005, Introduction to chemical engineering thermodynamics, 7th Ed., McGraw-Hill.

피인용 문헌

  1. Exergy Analysis of Regenerative Ammonia-Water Rankine Cycle for Use of Low-Temperature Heat Source vol.23, pp.1, 2012, https://doi.org/10.7316/khnes.2012.23.1.65