DOI QR코드

DOI QR Code

On Exploring the Properties of Pythagorean Triples Using Spreadsheets

스프레드시트를 활용한 피타고라스 삼원수 성질의 탐구

  • Son, Hong-Chan (Dept. of Math. Education, Chonbuk National University)
  • Received : 2011.01.13
  • Accepted : 2011.02.07
  • Published : 2011.02.15

Abstract

In this paper, we listed and discussed the properties of the Pythagorean triples which 5 gifted 9th graders could draw in spreadsheets environments. And we also discussed their implications. In detail, in spreadsheets environments students could make the table of Pythagorean triples easily under several conditions of generate numbers of Pythagorean triples. And they could draw several properties of Pythagorean triples from the tables and could prove them. In spreadsheets environments it is easy to give students chances of generalization of the properties of Pythagorean triples which they had obtained from the concrete table of Pythagorean triples.

본 고에서는 중학교 3학년 영재학생 5명을 대상으로 한 실험 수업 결과를 바탕으로 스프레드시트 환경에서 학생들이 생성수의 조건 변화에 따른 피타고라스 삼원수의 다양한 성질을 탐구할 수 있었음을 논하였고, 스프레드시트 환경이 스프레드시트의 구체적 수치로부터 학생이 발견하고 증명한 성질을 보다 일반적인 경우로 확장할 수 있는 기회를 줄 수 있었음을 논하였다. 또한 피타고라스 상원수의 다양한 성질을 탐구함에 있어서 교사의 적절한 안내가 필요함을 함께 논하였다.

Keywords

References

  1. 교육인적자원부 (2007). 수학과 교육과정, 교육인적자원부 고시 제 2007-79호 [별책 8].
  2. 이만근.전병기(역) (2007). 올 댓 피타고라스 정리. 경문사. 서울.
  3. 류희찬 (1997). 수학교육에서의 컴퓨터의 활용: 현황과 과제. 한국교원대 수학교육연구소 제6회 수학교육세미나.
  4. Anglin W. S. (1994). Mathematics: A Concise History and Philosophy, Springer. 류희찬.류성림(역) 수학의 철학과 역사(2003). 서울:경문사.
  5. Arganbright D., & Neuwirth E. (2004). The Active Modeler: Mathematical Modeling with Microsoft Excel. Thomson.
  6. Baker J. E., & Sugden S. J. (2003). Spreadsheets in education-the first 25 Years, eJSiE 1(1), 18-43.
  7. Beare, R., & Hewitson, J. (1996). Asking and answering all sorts of scientific questions using spreadsheets. School Science Review 77(281), 43-53.
  8. Beiler A. H. (1966). Recreations in the theory of numbers, Dover Publications, inc. New York.
  9. Bialas, Piotr. (2001). Spreadsheet use in an elementary statistics course. Doctoral Dissertation, Columbia University Teachers College.
  10. Friedlander, A. (1998). An excellent bridge to algebra, Mathematics teacher, 91(50), 382-383.
  11. Friedlander, A. (1999). Cognitive processes in a spreadsheet environment. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the International Group for the Psychology of Mathematics Education, Vol 2. 337-344.
  12. Hershkowitz, R., Dreyfus, T., Ben-Zvi, D., Friedlander, A., Hadas, N., Resnick, T., & Tabach, M. (2002). Mathematics curriculum development for computerized environ- ments: A designer-researcher-teacher-learner activity. In L. English (Ed.), Handbook of International Research in Mathematics Education. (pp. 657-694). Mahwah, NJ: Lawrence Erlbaum.
  13. NCTM (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics. 류희찬.조완영.이경화.나귀수.김남균.방정숙(역). 학교수학을 위한 원리와 규준. 서울: 경문사.
  14. Masalski, W. J. (1990). How to use the spreadsheet as a tool in the secondary school mathematics classroom, Reston, VA: NCTM.
  15. Morishita, E., Iwata, Y., Yoshida K. Y., & Yoshida H. (2001). Spreadsheet fluid dynamics for aeronautical course problems. International Journal of Engineering Education 17(3), 294-311.
  16. Power, D. J. (2002). A Brief History of Spreadsheets, DSSResources.COM, World Wide Web, http://dssresources.com/history/sshistory.html, version 3.6.
  17. Steward, A. (1994). Spreadsheets in Mathematical Education. International Journal of Mathematical Education in Science and Technology, 25(2).
  18. Sutherland, R., & Rojano, T. (1993). A spreadsheet approach to solving algebra problems. Journal of Mathematical behavior, 12, 353-383.
  19. Wilson, K. Ainley, J., & Bills L. (2004), Spreadsheet generalizing and paper and pencil generalizing, In Hoines, M. J. Fuglestad, A. B. (Ed.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education, Vol 4, 441-448.