DOI QR코드

DOI QR Code

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant

치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석

  • Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kim, Mi-Ryoung (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Park, Hyo-Sang (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kwon, Oh-Won (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • 유원재 (경북대학교 치의학전문대학원 교정학교실) ;
  • 김미령 (경북대학교 치의학전문대학원 교정학교실) ;
  • 박효상 (경북대학교 치의학전문대학원 교정학교실) ;
  • 경희문 (경북대학교 치의학전문대학원 교정학교실) ;
  • 권오원 (경북대학교 치의학전문대학원 교정학교실)
  • Received : 2010.08.04
  • Accepted : 2010.12.06
  • Published : 2011.02.28

Abstract

Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

마이크로 임플란트 시술의 중요한 위험요인 중 하나로 치근접촉 문제가 있으나, 관련 연구는 결과 분석에 치중되어 있고, 치근접촉이 마이크로 임플란트 안정성 상실로 이어지는 기전에 대한 연구는 아직 미흡한 것으로 보인다. 이에, 본 연구에서는 생역학적 측면에서 그 영향을 분석하였다. Absoanchor 마이크로 임플란트(SH1312-7, Dentos Inc., Daegu, Korea) 첨부가 치근에 접촉되어 있을 때, 저작압 전달에 의한 마이크로 임플란트 변위가 인접골에 가하는 압축응력을 축대칭 유한요소모델을 사용하여 계산하였다. 요소별 응력이 해면골의 최대압축강도나, 치밀골의 비정상 골개조 임계능력을 넘을 경우 해당 요소를 순차적으로 해석모델에서 제거하며 실행한 6단계해석의 결과, 마이크로 임플란트에 인접한 해면골의 전체적인 파절과 과부하에 따른 치밀골의 비정상 골개조가 임플란트 지지력 상실에 주 요인이 될 것으로 평가되었다. 치밀골의 과부하 영역은 초기에는 치밀골판의 하부에 존재하였으나 상부로 확장되었고, 응력 재분포로 인한 감소효과 없이 양성 되먹임(positive feedback)으로 결국 치밀골 전 두께로 확대됨을 관찰하였다. 본 연구를 통해 치근접촉된 마이크로 임플란트가 인접골을 훼손시켜 안정성 상실로 이어지는 과정을 모사할 수 있었으며, 이로부터 치근접촉에 따른 마이크로 임플란트의 불량한 예후에 대한 생역학적 측면의 원인을 파악할 수 있었다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. Chen YH, Chang HH, Chen YJ, Lee D, Chiang HH, Yao CC. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res 2008;19:99-106.
  2. Asscherickx K, Vannet BV, Wehrbein H, Sabzevar MM. Root repair after injury from mini-screw. Clin Oral Implants Res 2005;16:575-8. https://doi.org/10.1111/j.1600-0501.2005.01146.x
  3. Bae SM. The repair of the root and pulp tissue after intentional root injury by the orthodontic microimplant in dog. PhD thesis. Daegu, Korea: Kyungpook National University; 2005.
  4. Asscherickx K, Vande Vannet B, Wehrbein H, Sabzevar MM. Success rate of miniscrews relative to their position to adjacent roots. Eur J Orthod 2008;30:330-5. https://doi.org/10.1093/ejo/cjn019
  5. Kang YG, Kim JY, Lee YJ, Chung KR, Park YG. Stability of mini-screws invading the dental roots and their impact on the paradental tissues in beagles. Angle Orthod 2009;79:248-55. https://doi.org/10.2319/122007-413.1
  6. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007;131(4 Suppl):S68-73. https://doi.org/10.1016/j.ajodo.2006.06.017
  7. Park HS. An anatomical study using CT images for the implantation of micro-implants. Korean J Orthod 2002;32:435-41.
  8. Bae SM, Park HS, Kyung HM, Kwon OW, Sung JH. Clinical application of micro-implant anchorage. J Clin Orthod 2002; 36:298-302.
  9. Bae SM, Kyung HM. Clinical application of micro-implant anchorage (MIA) in orthodontics (2) - Anatomic consideration and surgical procedures. Korean J Clin Orthod 2002;1:16-29.
  10. Kim SH, Choi YS, Hwang EH, Chung KR, Kook YA, Nelson G. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2007; 131(4 Suppl):S82-9. https://doi.org/10.1016/j.ajodo.2006.01.027
  11. Poggio PM, Incorvati C, Velo S, Carano A. "Safe zones": a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006;76:191-7.
  12. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-71. https://doi.org/10.1016/0169-6009(92)90875-E
  13. Gelgor IE, Buyukyilmaz T, Karaman AI, Dolanmaz D, Kalayci A. Intraosseous screw-supported upper molar distalization. Angle Orthod 2004;74:838-50.
  14. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 2004;126:42-7. https://doi.org/10.1016/j.ajodo.2003.06.018
  15. Klineberg I, Jagger RG. Occlusion and clinical practice: an evidence-based approach. Edinburgh, New York, Wright: Elsevier; 2004. p. 84.
  16. NISA II/DISPLAY III User's Manual, Engineering Mechanics Research Corporation (EMRC).
  17. Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34. https://doi.org/10.1016/j.prosdent.2004.12.019
  18. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. 3DFEA of osseointegration percentages and patterns on implantbone interfacial stresses. J Dent 1997;25:485-91. https://doi.org/10.1016/S0300-5712(96)00061-9
  19. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999;57:700-6. https://doi.org/10.1016/S0278-2391(99)90437-8
  20. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U. Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite-element analysis. J Craniomaxillofac Surg 2001;29:100-5. https://doi.org/10.1054/jcms.2001.0198
  21. Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004;25:1959-67. https://doi.org/10.1016/j.biomaterials.2003.08.070
  22. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95.
  23. Wolff J. The law of bone remodelling. Berlin, Heidelberg, New York: Springer, 1986.
  24. Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorption. J Korean Acad Implant Dent 2003;22:38-48.
  25. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant - a three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86. https://doi.org/10.1111/j.1365-2842.2004.01413.x
  26. Hembree M, Buschang PH, Carrillo R, Spears R, Rossouw PE. Effects of intentional damage of the roots and surrounding structures with miniscrew implants. Am J Orthod Dentofacial Orthop 2009;135:280.e1-9. https://doi.org/10.1016/j.ajodo.2008.06.022
  27. Brisceno CE, Rossouw PE, Carrillo R, Spears R, Buschang PH. Healing of the roots and surrounding structures after intentional damage with miniscrew implants. Am J Orthod Dentofacial Orthop 2009;135:292-301. https://doi.org/10.1016/j.ajodo.2008.06.023
  28. Dao V, Renjen R, Prasad HS, Rohrer MD, Maganzini AL, Kraut RA. Cementum, pulp, periodontal ligament, and bone response after direct injury with orthodontic anchorage screws: a histomorphologic study in an animal model. J Oral Maxillofac Surg 2009;67:2440-5. https://doi.org/10.1016/j.joms.2009.04.138
  29. Reina JM, Garcia-Aznar JM, Dominguez J, Doblare M. Numerical estimation of bone density and elastic constants distribution in a human mandible. J Biomech 2007;40:828-36. https://doi.org/10.1016/j.jbiomech.2006.03.007