철골모멘트골조의 내진성능향상을 위한 층간변위조절기법

Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames

  • 투고 : 2011.11.01
  • 심사 : 2011.11.30
  • 발행 : 2011.12.31

초록

층간변위율은 구조물의 내진성능을 평가하는데 널리 사용되는 지표 중의 하나이다. 지진에 의해 발생하는 층간변위율이 클수록 지진에 의한 손상이 커지는 것으로 알려져 있다. 이러한 이유로 층간변위율을 감소시키는 설계기술은 내진설계분야에서 중요한 이슈이다. 그럼에도 불구하고 현재까지는 지진하중을 받는 구조물에 대한 현실적인 층간변위설계기법이 제시되고 있지 않다. 본 연구는 재분배 기법을 이용하여 철골모멘트골조의 내진성능을 향상시키기는 최적 층간변위설계기법을 제시한다. 이 기법은 층간변위율 차이를 최소화함으로써 구조물의 층별 층간변위율을 고르게 분포시키고, 최대 층간변위율을 감소시킨다. 이 기법은 단위하중법으로 계산된 변위기여도를 이용하여 구조재의 단면성능을 재설계하기 때문에 반복적인 구조해석없이 구조물의 내진성능을 향상시킬 수 있는 장점을 가진다. 이 기법의 효율성 검증을 위해 철골모멘트골조 예제 적용을 실시하였다.

The inter-story drift ratio is used to evaluate the damage of buildings by the earthquake. This is known that as the inter-story drift ratio decreases, the seismic damage decreases. Although to reduce the inter-story drift ratio is the important issue in the seismic design, no practical inter-story drift design method has bean developed. This study presents an optimal inter-story drift design method to improve the seismic performance of the steel moment frames using the resizing algorithm. The objective function of the proposed method is to minimize the differences of the inter-story drift ratios so that the inter-story drift ratios of the building could be distributed evenly and be reduced. Because this method redesigns the sectional properties of structural members base on the displacement participation factor calculated by the unit-load method, this can improve the seismic performance of the structure without the iterative structural analysis. The efficiency of this algorithm was demonstrated by the application to steel moment frames.

키워드

참고문헌

  1. 김준희, 서지현, 박효선 (2004) 지진하중을 받는 철골 구조물의 재분배 기법을 이용한 변위조절기법 개발, 대한건축학회 논문집 구조계 20(6), pp.3-10.
  2. 박효선, 서지현 (2004) 부재력 특성을 고려한 설계변수를 사용한 고층건물 변위조절설계법 개발, 한국전산구조공학회 논문집, 17(2), pp.215-222.
  3. 서지현, 권봉근, 박효선 (2006) 재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가, 한국강구조학회 논문집, 18(3), pp.361-371.
  4. Alimoradi, A., Pezeshk, S. Foley, C.M. (2007) Probabilistic Performance-Based Optimal Design of Steel Moment Resisting Frames. II: Applications, Journal of Structural Engineering, 133(6), pp.767-776. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(767)
  5. Al-Ansari, M. Senouci, A. (2011) Drift Optimization of High-rise Buildings in Earthquake Zones, Struct. Design Tall Spec. Build. 20(2), pp.208-222. https://doi.org/10.1002/tal.530
  6. Bruneau, M.C.M., Whittaker, A. (1998) Ductile Design of Steel Structures, McGraw-Hill, New York.
  7. Chan, C.M., Zou, X.K. (2004) Elastic and Inelastic Drift Performance Optimization for Reinforced Concrete Buildings under Earthquake Loads, Earthquake Engng Struct. Dyn., 33, pp.929-950. https://doi.org/10.1002/eqe.385
  8. Federal Emergency Management Agency (1997) NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273), Washington, DC.
  9. Foutch, D.A., Yun, S. (2002) Modeling of Steel Moment Frames for Seismic Loads, Journal of Construction Steel Research, 58, pp.529-564. https://doi.org/10.1016/S0143-974X(01)00078-5
  10. Gupta A., Krawinkler H. (1999). Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures, The John A. Blume Earthquake Engineering Center, Report No. 132, Dept. of Civil Engineering, Stanford University, Stanford, California.
  11. Hasan, R., Xu, L., Grierson, D.E. (2002) Push-over Analysis for Performance-Based Seismic Design, Computers and Structures, pp.2483-2493.
  12. ICC. (2000). International Building Code. International Code Council.
  13. Kaveh, A., Dadfar, B. (2008) Optimum Seismic Design of Steel Moment Resisting Frames by Genetic Algorithms, Asian Journal of Civil Engineering (Building and Housing), 9(2), pp.107-129.
  14. Kaveh, A., Azar, B.F., Hadidi, A., Sorochi, F.R., Talatahari, S. (2010) Performance-Based Seismic Design of Steel Frames using Ant Colony Optimization, Journal of Constructional Steel Research, 66, pp.566-574. https://doi.org/10.1016/j.jcsr.2009.11.006
  15. Liu, M. (2003) Development of Multiobjective Optimization Procedures for Seismic Design of Steel Moment Frame Structures, Ph.D. thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL.
  16. Liu, M., Burns, S.A., Wen, Y.K. (2005) Multiobjective Optimization for Performance-Based Seismic Design of Steel Moment Frame Structures, Earthquake Engng Struct. Dyn. 34, pp.289-306. https://doi.org/10.1002/eqe.426
  17. Moghaddam, H., Hajirasouliha, I., Doostan, A. (2005) Optimum Seismic Design of Concentrically Braced Steel Frames: Concepts and Design Procedures, Journal of Constructional Steel Research, 61, pp.151-166. https://doi.org/10.1016/j.jcsr.2004.08.002
  18. Park, H.S., Kwon, J.H. (2003) Optimal Drift Design Model for Multi-story Buildings Subjected to Dynamic Lateral Forces, Struct. Design Tall Spec. Build. 12, pp.317-333. https://doi.org/10.1002/tal.224
  19. Xu, L., Gong, Y., Grierson, D.E. (2006) Seismic Design Optimization of Steel Building Frameworks, Journal of Structural Engineering, 132(2), pp.277-286. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(277)
  20. Zou, X.K., Chan, C.M., Li, G., Wang, Q. (2007) Multiobjective Optimization for Performance-Based Design of Reinforced Concrete Frames, Journal of Structural Engineering, 133(10), pp.1462-1474. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1462)