DOI QR코드

DOI QR Code

일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation

  • 황연상 (아칸소 주립대학교) ;
  • 허준행 (연세대학교 사회환경시스템공학부) ;
  • 정영훈 (연세대학교 사회환경시스템공학부)
  • 투고 : 2011.01.05
  • 심사 : 2011.03.04
  • 발행 : 2011.03.31

초록

입력자료의 불확실성은 강우-유출 모의에서 중요한 불확실성 요소 중의 하나이다. 본 연구에서는 먼저 세 가지의 서로 다른 내삽 기법을 통해 계산된 강수 입력 자료 (관측값을 각 소유역의 중심점으로 내삽하여 추정한 입력자료임)들이 강우-유출 모형에 미치는 영향을 분포형 수문모형 (PRMS)을 이용하여 분석하였으며, 내삽오차를 바탕으로 발생한 입력자료를 앙상블 유량 예측에 이용하는 과정을 수문학적으로 서로 다른 두개 하천 유역에 적용하였다. 또한 Monte Carlo기법을 이용하여 수문 모형의 매개변수가 서로 다른 입력자료의 특성에 따라 변화하는 양상을 구분하여 보았다. 본 연구에서 제시된 앙상블 유량 예측방법은 기상 예측 및 기상 모형의 결과물 등의 입력자료를 이용함으로써 중/장기 유량 예측에 활용될 수 있을 것으로 판단된다.

Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

키워드

참고문헌

  1. 황연상, 정영훈, 임광섭, 허준행 (2010). “강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발.” 한국수자원학회논문집, 한국수자원학회,제43권, 제12호, pp. 1083-1091.
  2. Blazkova, S., and Beven, K. (2002). “Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty).” Water Resources Research, Vol. 38, No. 8, pp. 1139-1151. https://doi.org/10.1029/2001WR000500
  3. Carpenter, T.M., and Georgakakos, K.P. (2004). “Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulation of a distributedhydrologic model.” Journal of Hydrology, Vol. 298, No. 1-4, pp. 202-221. https://doi.org/10.1016/j.jhydrol.2004.03.036
  4. Carpenter, T.M., Georgakakos, K.P., and Sperfslagea, J.A. (2001). “On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic modelsuitable for operational use.” Journal of Hydrology, Vol. 253, No. 1-4, pp. 169-193. https://doi.org/10.1016/S0022-1694(01)00476-0
  5. Clark, M.P., and Hay, L.E. (2004). “Use of mediumrange numerical weather prediction model output to produce forecasts of streamflow.” Journal of Hydrometeorology, Vol. 5, No. 1, pp. 15-32. https://doi.org/10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2
  6. Clark, M.P., and Slater, A.G. (2005). “Probabilistic quantitative precipitation estimation in complex terrain.” Journal of Hydrometeorology, Vol. 7, No. 1, pp. 3-22.
  7. Day, G.N. (1985). “Extended streamflow forecasting using NWSRFS.” Journal of Water Resources Planning and Management, Vol. 111, No. 2, pp. 157-170. https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)
  8. Duan, Q., Gupta, V.K., and Sorooshian, S. (1993). “A shuffled complex evolution approach for effective and efficient global minimization.” Journal of Optimization Theory and Applications, Vol. 76, No. 3, pp. 501-521. https://doi.org/10.1007/BF00939380
  9. Gourley, J.J., and Vieux, B.E. (2005). “A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective.” Journal of Hydrometeorology, Vol. 6, No. 2, pp. 115-133. https://doi.org/10.1175/JHM408.1
  10. Hay, L.E., and McCabe, G.J. (2002). “Spatial variability in water-balance model performance in the conterminous united states.” Journal of the AmericanWater Resources Association, Vol. 38, No. 3, pp. 847-860. https://doi.org/10.1111/j.1752-1688.2002.tb01001.x
  11. Hay, L.E., Leavesley, G.H., Clark, M.P., Markstrom, S.L., Viger, R.J., and Umemoto, M. (2006). “Step wise, multiple objective calibration of a hydrologicmodel for a snowmelt dominated basin.” Journal of the American Water Resources Association, Vol. 42, No. 4, pp. 877-890. https://doi.org/10.1111/j.1752-1688.2006.tb04501.x
  12. Helsel, D.R., and Hirsch, R.M., (2002). Statistical methods in water resources, Techniques of water resources investigations, Book 4, Chapter A3. U.S. Geological Survey. pp. 522.
  13. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G. (1983). Precipitation-runoff modeling system: user's manual, U.S. Geological Survey Water-Resources Investigations 83-4238, pp. 207.
  14. Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G. (1996). The modular modeling system - MMS: user's manual, Open file report pp. 96-151, U.S. Geological Survey.
  15. Nash, J.E., and Sutcliffe, J.V. (1970). “River flow forecasting through conceptual models part I-a discussion of principles.” Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  16. Rajagopalan, B., and Lall, U. (1998). “Locally weighted polynomial estimation of spatial precipitation.” Journal of Geographic Information and Decision Analysis, Vol. 2, No. 2, pp. 44-51.
  17. Reek, T., Doty, S.R., and Owen, T.W. (1992). “A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network.” Bulletin of the American Meteorological Society, Vol. 73, No. 6, pp. 753-762. https://doi.org/10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2
  18. Xia, Y., Pitman, A.J., H.V. Gupta, M.L., Henderson-Sellers, A., and Bastidas, L.A. (2002). “Calibrating a land surface model of varying complexity using multicriteria methods and the cabauw dataset.” Journal of Hydrometeorology, Vol. 3, No. 2, pp. 181-194. https://doi.org/10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2