DOI QR코드

DOI QR Code

Decreased Interaction of Raf-1 with Its Negative Regulator Spry2 as a Mechanism for Acquired Drug Resistance

  • Ahn, Jun-Ho (Division of Life Sciences, College of Natural Sciences, University of Incheon) ;
  • Kim, Yun-Ki (Division of Life Sciences, College of Natural Sciences, University of Incheon) ;
  • Lee, Michael (Division of Life Sciences, College of Natural Sciences, University of Incheon)
  • Received : 2010.12.06
  • Accepted : 2011.03.02
  • Published : 2011.04.30

Abstract

Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance to paclitaxel in v-H-ras transformed NIH 3T3 fibroblasts (Ras-NIH 3T3). We established a multidrug-resistant cell line (Ras-NIH 3T3/Mdr) from Ras-NIH 3T3 cells by stepwise increases in paclitaxel. Drug sensitivity assays indicated that the $IC_{50}$ value for drug-resistant Ras-NIH 3T3/Mdr cells was more than 1 ${\mu}M$ paclitaxel, 10- or more-fold higher than for the parental Ras-NIH 3T3 cells. Western blot and RT-PCR analysis showed that the drug efflux pump a P-glycoprotein were highly expressed in Ras-NIH 3T3/Mdr cells, while not being detectable in Ras-NIH 3T3 cells. Additionally, verapamil, which appears to inhibit drug efflux by acting as a substrate for P-glycoprotein, completely reversed resistance to paclitaxel in Ras-NIH 3T3/Mdr cell line, indicating that resistance to paclitaxel is associated with overexpression of the multidrug resistance gene. Interestingly, Ras-NIH 3T3/Mdr cells have higher basal Raf-1 activity compared to Ras-NIH 3T3 cells. Unexpectedly, however, the colocalization of Raf-1 and its negative regulator Spry2 was less observed in cytoplasm of Ras-NIH 3T3/Mdr cells due to translocation of Spry2 around the nucleus in the perinuclear zone, implying that Raf-1 may be released from negative feedback inhibition by interacting with Spry2. We also showed that shRNA-mediated knockdown of Raf-1 caused a moderate increase in cell susceptibility to paclitaxel. Thus, the results presented here suggest that a Raf-1-dependent pathway plays an important role in the development of acquired drug-resistance.

Keywords

References

  1. Abrams, S. L., Steelman, L. S., Shelton, J. G., Wong, E. W., Chappell, W. H., Basecke, J., Stivala, F., Donia, M., Nicoletti, F., Libra, M., Martelli, A. M. and McCubrey, J. A. (2010) The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle 9, 1781-1791. https://doi.org/10.4161/cc.9.9.11483
  2. Ahn, J. H., Eum, K. H. and Lee, M. (2009) The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol. Cell. Biochem. 332, 189-197. https://doi.org/10.1007/s11010-009-0191-5
  3. Ahn, J. H., Eum, K. H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211. https://doi.org/10.5483/BMBRep.2010.43.3.205
  4. Blobe, G. C., Sachs, C. W., Khan, W. A., Fabbro, D., Stabel, S., Wetsel, W. C., Obeid, L. M., Fine, R. L. and Hannun, Y. A. (1993) Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKC alpha. J. Biol. Chem. 268, 658-664.
  5. Callaghan, R. and Higgins, C. F. (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br. J. Cancer 71, 294-299. https://doi.org/10.1038/bjc.1995.59
  6. Chatterjee, D., Bai, Y., Wang, Z., Beach, S., Mott, S., Roy, R., Braastad, C., Sun, Y., Mukhopadhyay, A., Aggarwal, B. B., Darnowski, J., Pantazis, P., Wyche, J., Fu, Z., Kitagwa, Y., Keller, E. T., Sedivy, J. M. and Yeung, K. C. (2004) RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J. Biol. Chem. 279, 17515-17523. https://doi.org/10.1074/jbc.M313816200
  7. Cornwell, M. M. and Smith, D. E. (1993) A signal transduction pathway for activation of the mdr1 promoter involves the proto-oncogene c-raf kinase. J. Biol. Chem. 268, 15347-15350.
  8. Davis, J. M., Navolanic, P. M., Weinstein-Oppenheimer, C. R., Steelman, L. S., Hu, W., Konopleva, M., Blagosklonny, M. V., McCubrey, J. A. (2003) Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clin. Cancer Res. 9, 1161-1170.
  9. Dong, Y., Shao, S., Hu, J. and Yang, P. (2009) Reversal effect of Raf-1/Mdr-1 siRNAs co-transfection on multidrug resistance in KBv200 cell line. Oral Oncol. 45, 991-997. https://doi.org/10.1016/j.oraloncology.2009.05.642
  10. Gottesman, M. M. (2002) Mechanisms of cancer drug resistanace. Annu. Rev. Med. 53, 615-627. https://doi.org/10.1146/annurev.med.53.082901.103929
  11. Gupta, K. P., Ward, N. E., Gravitt, K. R., Bergman, P. J. and O'Brian, C. A. (1996) Partial reversal of multidrug resistance in human breast cancer cells by an N-myristoylated protein kinase C-alpha pseudosubstrate peptide. J. Biol. Chem. 271, 2102-2111. https://doi.org/10.1074/jbc.271.4.2102
  12. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263. https://doi.org/10.1016/S0092-8674(00)80919-8
  13. Haldar, S., Chintapalli, J. and Croce, C. M. (1996) Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56, 1253-1255.
  14. Jaffrezou, J. P., Herbert, J. M., Levade, T., Gau, M. N., Chatelain, P. and Laurent, G. (1991) Reversal of multidrug resistance by calcium channel blocker SR33557 without photoaffinity labeling of P-glycoprotein. J. Biol. Chem. 266, 19858-19864.
  15. Jazirehi, A. R., Vega, M. I., Chatterjee, D., Goodglick, L. and Bonavida, B. (2004) Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab. Cancer Res. 64, 7117-7126. https://doi.org/10.1158/0008-5472.CAN-03-3500
  16. Kim, S. H., SH, L., NH, K., CD, K. and BS, C. (1996) Effect of the activated Raf protein kinase on the human multidrug resistance 1 (MDR1) gene promoter. Cancer Lett. 98, 199-205. https://doi.org/10.1016/S0304-3835(06)80032-7
  17. Lee, L. F., Haskill, J. S., Mukaida, N., Matsushima, K. and Ting, J. P. (1997) Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter. Mol. Cell. Biol. 17, 5097-5105.
  18. Lee, M. (2006) Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochem. Biophys. Res. Commun. 350, 450-456. https://doi.org/10.1016/j.bbrc.2006.09.067
  19. Lee, M., Ahn, J. H. and Eum, K. H. (2009) The differences in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res. Treat. 41, 93-99. https://doi.org/10.4143/crt.2009.41.2.93
  20. Lee, M., Koh, W. S. and Han, S. S. (2003) Down-regulation of Raf-1 kinase is associated with paclitaxel resistance in human breast cancer MCF-7/Adr cells. Cancer Lett. 193, 57-64. https://doi.org/10.1016/S0304-3835(02)00722-X
  21. Marshall, M. S. (1995) Ras target proteins in eukaryotic cells. FASEB J. 9, 1311-1318.
  22. McGrogan, B. T., Gilmartin, B., Carney, D. N. and McCann, A. (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta 1785, 96-132.
  23. Mercer, K. E. and Pritchard, C. A. (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653, 25-40.
  24. Nobili, S., Landini, I., Giglioni, B. and Mini, E. (2006) Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 7, 861-879. https://doi.org/10.2174/138945006777709593
  25. Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., Kuriyama, M., Saito, N., Shibuya, M. and Yoshimura, A. (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat. Cell Biol. 5, 427-432. https://doi.org/10.1038/ncb978
  26. Weinstein-Oppenheimer, C. R., Henriquez-Roldan, C. F., Davis, J. M., Navolanic, P. M., Saleh, O. A., Steelman, L. S., Franklin, R. A., Robinson, P. J., McMahon, M. and McCubrey, J. A. (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin. Cancer Res. 7, 2898-2907.
  27. Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93-105. https://doi.org/10.2174/1874467210801020093
  28. Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W., Mischak, H., Sedivy, J. M. and Kolch, W. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173-177. https://doi.org/10.1038/43686
  29. Yusa, K. and Tsuruo, T. (1989) Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49, 5002-5006.
  30. Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S., Lim, J., Lo, T. L., Leong, H. F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201. https://doi.org/10.1074/jbc.M108368200
  31. Zhong, J., Troppmair, J. and Rapp, U. R. (2001) Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20, 4807-4816. https://doi.org/10.1038/sj.onc.1204614

Cited by

  1. Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells vol.20, pp.4, 2012, https://doi.org/10.4062/biomolther.2012.20.4.393
  2. Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.007
  3. Differential inhibitory effects of two Raf-targeting drugs, sorafenib and PLX4720, on the growth of multidrug-resistant cells vol.372, pp.1-2, 2013, https://doi.org/10.1007/s11010-012-1446-0
  4. Suppression of autophagy sensitizes multidrug resistant cells towards Src tyrosine kinase specific inhibitor PP2 vol.310, pp.2, 2011, https://doi.org/10.1016/j.canlet.2011.06.034
  5. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts vol.417, pp.2, 2012, https://doi.org/10.1016/j.bbrc.2011.12.061
  6. Defective autophagy in multidrug resistant cells may lead to growth inhibition by BH3-mimetic gossypol vol.228, pp.7, 2013, https://doi.org/10.1002/jcp.24305
  7. ATG5 knockout promotes paclitaxel sensitivity in drug-resistant cells via induction of necrotic cell death vol.24, pp.3, 2011, https://doi.org/10.4196/kjpp.2020.24.3.233