DOI QR코드

DOI QR Code

Protective Effect of Chlorogenic Acid against Aβ-Induced Neurotoxicity

  • Lee, Chan-Woo (Immune Modulation Lab., College of Pharmacy, Research Institute for Translational System Biomics, Chung-Ang University) ;
  • Won, Tae-Joon (Immune Modulation Lab., College of Pharmacy, Research Institute for Translational System Biomics, Chung-Ang University) ;
  • Kim, Hak-Rim (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Lee, Dong-Ho (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Hwang, Kwang-Woo (Immune Modulation Lab., College of Pharmacy, Research Institute for Translational System Biomics, Chung-Ang University) ;
  • Park, So-Young (Department of Pharmacognosy, College of Pharmacy, Dankook University)
  • Received : 2011.01.08
  • Accepted : 2011.02.17
  • Published : 2011.04.30

Abstract

Beta-amyloid (A${\beta}$) is considered as one of the major causes of Alzheimer's disease. This study examined the neuroprotective effects of chlorogenic acid, a naturally occurring polyphenol which is distributed widely in plants, fruits and vegetables, against A${\beta}$-induced toxicity. A${\beta}$ decreased significantly the viability of PC12 cells. This was accompanied by an increase in the intracellular calcium levels and cleaved caspase-3. In addition, A${\beta}$ induced an increase in Bax, and a decrease in Bcl-2 compared to the controls. However, a pre-treatment with chlorogenic acid rescued the PC12 cells from A${\beta}$ by attenuating the elevated intracellular calcium levels and reducing the levels of the apoptosis related proteins, including caspase-3, Bcl-2 and Bax. These results suggest that the protective effects of chlorogenic acid are, at least in parts, by attenuating the intracellular calcium influx and reducing apoptosis induced by A${\beta}$.

Keywords

References

  1. Allen, J. W., Eldadah, B. A., Huang, X., Knoblach, S. M. and Faden, A. I. (2001) Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. J. Neurosci. Res. 65, 45-53. https://doi.org/10.1002/jnr.1126
  2. Almeida, A. A., Farah, A., Silva, D. A., Nunan, E. A. and Gloria, M. B. (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food Chem. 54, 8738-8743. https://doi.org/10.1021/jf0617317
  3. Clifford, M. N. (1999) Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden. J. Sci. Food Agric. 79, 362-372. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
  4. Couladis, M., Baziou, P., Verykokidou, E. and Loukis, A. (2002) Antioxidant activity of polyphenols from Hypericum triquetrifolium Turra. Phytother. Res. 16, 769-770. https://doi.org/10.1002/ptr.1062
  5. Cummings, J. L., Vinters, H. V., Cole, G. M. and Khachaturian, Z. S. (1998) Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51, S2-17; discussion S65-17.
  6. dos Santos, M. D., Almeida, M. C., Lopes, N. P. and de Souza, G. E. (2006) Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 29, 2236-2240. https://doi.org/10.1248/bpb.29.2236
  7. Fu, H., Li, W., Lao, Y., Luo, J., Lee, N. T., Kan, K. K., Tsang, H. W., Tsim, K. W., Pang, Y., Li, Z., Chang, D. C., Li, M. and Han, Y. (2006) Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J. Neurochem. 98, 1400-1410. https://doi.org/10.1111/j.1471-4159.2006.03960.x
  8. Granado-Serrano, A. B., Martin, M. A., Izquierdo-Pulido, M., Goya, L., Bravo, L. and Ramos, S., (2007) Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J. Agric. Food Chem. 55, 2020-2027. https://doi.org/10.1021/jf062556x
  9. Huang, M. T., Smart, R. C., Wong, C. Q. and Conney, A. H. (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946.
  10. Huang, S. M., Chuang, H. C., Wu, C. H. and Yen, G. C. (2008) Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells. Mol. Nutr. Food Res. 52, 940-949. https://doi.org/10.1002/mnfr.200700360
  11. Iuvone, T., De Filippis, D., Esposito, G., D'Amico, A. and Izzo, A. A. (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 317, 1143-1149. https://doi.org/10.1124/jpet.105.099317
  12. Joseph, J. A., Shukitt-Hale, B., Brewer, G. J., Weikel, K. A., Kalt, W. and Fisher, D. R. (2010) Differential protection among fractionated blueberry polyphenolic families against DA-, Abeta(42)- and LPS-induced decrements in Ca(2+) buffering in primary hippocampal cells. J. Agric. Food Chem. 58, 8196-8204. https://doi.org/10.1021/jf100144y
  13. Kawahara, M. and Kuroda, Y. (2000) Molecular mechanism of neurodegeneration induced by Alzheimer's beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53, 389-397. https://doi.org/10.1016/S0361-9230(00)00370-1
  14. Kelly, B. L. and Ferreira, A. (2006) beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J. Biol. Chem. 281, 28079-28089. https://doi.org/10.1074/jbc.M605081200
  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  16. Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J. and Cotman, C. W. (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. U S A 90, 7951-7955. https://doi.org/10.1073/pnas.90.17.7951
  17. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E. and Rogers, J. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853-862. https://doi.org/10.1016/S0002-9440(10)65184-X
  18. Morton, L. W., Abu-Amsha Caccetta, R., Puddey, I. B. and Croft, K. D. (2000) Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 27, 152-159. https://doi.org/10.1046/j.1440-1681.2000.03214.x
  19. Naowaratwattana, W., De-Eknamkul, W. and De Mejia, E. G. (2010) Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIalpha activity. J. Med. Food 13, 1045-1056. https://doi.org/10.1089/jmf.2010.1021
  20. Park, S. Y. and Kim, D. S. (2002) Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer's disease. J. Nat. Prod. 65, 1227-1231. https://doi.org/10.1021/np010039x
  21. Park, S. Y, Kim, H. S., Cho, E. K, Kwon, B. Y., Phark, S., Hwang, K. W. and Sul, D. (2008) Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol. 46, 2881-2887. https://doi.org/10.1016/j.fct.2008.05.030
  22. Park, S. Y., Kim, H. S., Hong, S. S., Sul, D., Hwang, K. W. and Lee, D. (2009) The neuroprotective effects of traditional Korean herbal medicines against β-amyloid-induced toxicity. Pharmaceutical. Biol. 47, 976-981. https://doi.org/10.1080/13880200902967987
  23. Paynter, N. P., Yeh, H. C., Voutilainen, S., Schmidt, M. I., Heiss, G., Folsom, A. R., Brancati, F. L. and Kao, W. H. L. (2006) Coffee and Sweetened Beverage Consumption and the Risk of Type 2 Diabetes Mellitus. Am. J. Epiderm. 164, 1075-1084. https://doi.org/10.1093/aje/kwj323
  24. Qin, H. D., Shi, Y. Q., Liu, Z. H., Li, Z. G., Wang, H. S., Wang, H. and Liu, Z. P. (2010) Effect of chlorogenic acid on mast cell-dependent anaphylactic reaction. Int. Immunopharmacol. 10, 1135-1141. https://doi.org/10.1016/j.intimp.2010.06.018
  25. Selkoe, D. J. (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447-453. https://doi.org/10.1016/S0962-8924(98)01363-4
  26. Selkoe, D. J. (2000) Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. N. Y. Acad. Sci. 924, 17-25.
  27. Smith, R. C., Reeves, J. C., Dage, R. C. and Schnettler, R. A. (1987) Antioxidant properties of 2-imidazolones and 2-imidazolthiones. Biochem. Pharmacol. 36, 1457-1460. https://doi.org/10.1016/0006-2952(87)90110-9
  28. Su, J. H., Zhao, M., Anderson, A. J., Srinivasan, A. and Cotman, C. W. (2001) Activated caspase-3 expression in Alzheimer's and aged control brain: correlation with Alzheimer pathology. Brain Res. 898, 350-357. https://doi.org/10.1016/S0006-8993(01)02018-2
  29. Xiao, X. Q., Zhang, H. Y. and Tang, X. C. (2002) Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res. 67, 30-36. https://doi.org/10.1002/jnr.10075
  30. Yuyama, K., Yamamoto, H., Nishizaki, I., Kato, T., Sora, I. and Yamamoto, T. (2003) Caspase-independent cell death by low concentrations of nitric oxide in PC12 cells: involvement of cytochrome C oxidase inhibition and the production of reactive oxygen species in mitochondria. J. Neurosci. Res. 73, 351-363. https://doi.org/10.1002/jnr.10669
  31. Zang, L. Y., Cosma, G., Gardner, H., Castranova, V. and Vallyathan, V. (2003) Effect of chlorogenic acid on hydroxyl radical. Mol. Cell. Biochem. 247, 205-210. https://doi.org/10.1023/A:1024103428348

Cited by

  1. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.) vol.45, pp.2, 2015, https://doi.org/10.1016/j.tifs.2015.07.015
  2. Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells vol.142, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.04.010
  3. Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties vol.132, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2011.12.028
  4. Multivariate Optimization of Chlorogenic Acid Extraction From Brazilian Coffee vol.10, pp.9, 2017, https://doi.org/10.1007/s12161-017-0847-9
  5. Protective Effects of Fucoidan on Aβ25–35 and d-Gal-Induced Neurotoxicity in PC12 Cells and d-Gal-Induced Cognitive Dysfunction in Mice vol.15, pp.3, 2017, https://doi.org/10.3390/md15030077
  6. Effect of Thermal Processing and Maceration on the Antioxidant Activity of White Beans vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0099325
  7. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats vol.33, pp.2, 2012, https://doi.org/10.1016/j.etap.2011.12.022
  8. Cassia tora Linn.: A boon to Alzheimer's disease for its anti-amyloidogenic and cholinergic activities vol.33, 2017, https://doi.org/10.1016/j.phymed.2017.06.002
  9. Down-Regulation of NFkB, Bax,TGF-β, Smad-2mRNA expression in the Livers of Carbon Tetrachloride Treated Rats using Different Natural Antioxidants vol.59, pp.0, 2016, https://doi.org/10.1590/1678-4324-2016150553
  10. Nootropic and Anti-Alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology pp.1559-1182, 2019, https://doi.org/10.1007/s12035-018-1420-2
  11. Health promoting properties of blueberries: a review pp.1549-7852, 2020, https://doi.org/10.1080/10408398.2018.1518895
  12. Nardostachys jatamansi Ethanol Extract Ameliorates Aβ42 Cytotoxicity vol.41, pp.4, 2018, https://doi.org/10.1248/bpb.b17-00750
  13. Eduscho Coffee Extract Effectively Inhibits the Formation of Amyloid-like Fibrils by Trypsin in Aqueous Ethanol vol.13, pp.12, 2011, https://doi.org/10.1177/1934578x1801301229
  14. Potential of Caffeine in Alzheimer’s Disease-A Review of Experimental Studies vol.13, pp.2, 2011, https://doi.org/10.3390/nu13020537