DOI QR코드

DOI QR Code

Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

선진 핵연료주기 기술 개발을 위한 핵연료주기 분석 기술

  • Received : 2011.10.25
  • Accepted : 2011.11.15
  • Published : 2011.12.30

Abstract

The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

핵연료주기 분석 연구는 핵연료주기 단계에서 기술들을 분석하고 요건들을 도출하여 국가적 핵연료주기 정책 설정 및 추진을 체계적으로 수행하기 위한 연구이다. 시스템 분석 기술은 대상 시스템의 비교 분석 평가에 활용되며 핵연료주기를 대상으로 하는 경우 각 국가 또는 관심 범위에 따라 다양한 방법이 사용된다. 본 연구에서는 국내 선진 핵연료주기 개발을 위해 필요한 핵연료주기 분석 전략과 함께 이를 위해 사용될 수 있는 분석 기술들을 제시하였다. 핵연료주기 분석은 전략적으로 기술적 분석, 국내외 이해관계, 국가 에너지 프로그램과 연계되어야 한다. 이를 위해 다양한 핵연료주기를 비교하여 제시된 평가 지표에 따라 분석하는 연구는 트레이드 연구 방법을 적용하여 수행할 수 있다. 본 연구를 통한 조사 분석 결과 핵연료주기 분석 전략과 함께 방법적 측면에서 트레이드 연구가 선진 핵연료주기 도출에 활용될 수 있을 것으로 파악되었다. 트레이드 연구에 필수적인 평가지표를 선정하고 각 지표별 핵연료주기에 대한 정보를 얻기 위해서는 기술성숙도 분석 방법과 핵연료주기 시뮬레이터를 활용할 수 있을 것으로 제시하였다. 이들은 핵연료주기의 기술성, 경제성, 환경영향성 등을 비교 평가하여 기술개발을 위한 방향을 제시하고 체계적인 선진 핵연료주기 도출 및 실현에 기여할 것이다.

Keywords

References

  1. U.S. DOE Report, "Report to Congress on Advanced Fuel Cycle Initiative: The Future Path for Advanced Spent Fuel Treatment and Transmutation Research," January (2003).
  2. J. W. Herczeg, "Fuel Cycle Research and Development Overview," FY2011 NEUP Workshop, Rockville, U.S., 27-28 July (2010).
  3. B. Williams, "The Fuel Cycle R&D Program Systems Analysis," FY2011 NEUP Workshop, Rockville, U.S., 27-28 July (2010).
  4. B. Savage, "Fuel Cycle Research and Development: Moving to a Long-Term, Science-Based, Goal-Oriented Program," Fuel Cycle Information Exchange, Bethesda, U.S., June 29-July 1 (2010).
  5. C. J. Jeong and W. I. Ko, "Scenario Analysis for a Transuranic Transmutation by Using Fast Reactors Compared to Accelerator Driven Systems," Energy Conversion and Management, 49, pp. 1917-1921 (2008). https://doi.org/10.1016/j.enconman.2007.12.014
  6. B. H. Park, F. Gao, E.-H. Kwon, and W. I. Ko, "Comparative Study of Different Nuclear Fuel Cycle Options: Quantitative Analysis on Material Flow," Energy Policy, 39, pp. 6916-6924 (2011). https://doi.org/10.1016/j.enpol.2011.03.083
  7. NASA, "NASA Systems Engineering Handbook", NASA/SP-2007-6105 Rev1 (2007).
  8. S. J. Piet, G. E. Matthern, J. J. Jacobson, C. T. Laws, L. C. Cadwallader, A. M. Yacout, R. N. Hill, J. D. Smith, A. S. Goldmann, and G. Bailey, "Fuel Cycle Scenario Definition, Evaluation, and Trade-Offs", INL Report, INL/EXT-06-11683 (2006).
  9. D. M. Tendall and C. R. Binder, "Nuclear Energy in Europe: Uranium Flow Modeling and Fuel Cycle Scenario Trade-Offs from a Sustainability Perspective", Environmental Science & Technology, 45, pp. 2442-2449 (2011). https://doi.org/10.1021/es103270a
  10. W. L. Nolte, B. C. Kennedy, and R. J. Dziegiel Jr., "Technology Readiness Level Calculator," NDIA Systems Engineering Conference, San Diego, U.S. 20-23 October (2003).
  11. L. Holten, D. Alexander, C. Babel, H. Sutter, and J. Young, "Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities," DOE Report, 07-DESIGN-042 (2007).
  12. K. O. Pasamehmetoglu, "Definition of Technology Readiness Levels for Transmutation Fuel Development", INL Report, GNEP-FUEL-TD-RT-2008-000051 (2008).
  13. K. Minato, Y. Morita, K. Tsujimoto, S. Koyama, M. Kurata, T. Inoue, and K. Ikeda, "Technology Readiness Levels for Partitioning and Transmutation of Minor Actinides in Japan", OECD/NEA 11IEMPT, San Francisco, U.S., 1-4 November (2010).
  14. GNEP Technical Integration Office, "Global Nuclear Energy Partnership Technology Development Plan", GNEP Report, GNEP-TECH-TR-PP-2007-00020, Rev 0 (2007).
  15. J. J. Laidler, "GNEP Spent Fuel Processing; Waste Streams and Disposition Options", NWTRB, Washington D.C., U.S., 15 May (2007).
  16. L. Boucher, F. A. Velarde, E. Gonzalez, G. W. Dixon, G. Edwards, G. Dick, and K. Ono, "International Comparison for Transition Scenario Codes Involving COSI, DESAE, EVOLCODE, FAMILY and VISION", OECD/NEA 11IEMPT, San Francisco, U.S., 1-4 November (2010).

Cited by

  1. Demonstration of Zr Recovery from 50 g Scale Zircaloy-4 Cladding Hulls using a Chlorination Method vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.55
  2. Chlorination Reaction Behavior of Zircaloy-4 Hulls: A Preliminary Study on the Effect of the Oxidation Process on the Reaction Rate vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.69