• Title/Summary/Keyword: Nuclear Fuel Cycle Simulator

Search Result 13, Processing Time 0.025 seconds

Analysis of Remote Operation involved in Spent Nuclear Fuel Conditioning Process using its Virtual Mockup

  • Yoon, Ji-Sup;Kim, Sung-Hyun;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.840-845
    • /
    • 2004
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. Since the spent nuclear fuel, which is a high radioactive material, is processed in the ACP, the ACP equipment is operated in intense radiation fields as well as in a high temperature. Thus, the equipment is operated in a remote manner and should be designed with consideration for the remote handling and maintenance. Also suitable remote handling technology needs to be developed along with the design of the process concepts. For this we developed a graphic simulator, which provides the capability of verifying the remote operability of the ACP without the fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in the real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time developing a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

3D Modeling and Simulation using Virtual Manipulator (가상 조작기를 이용한 3D 모델링 및 시뮬레이션)

  • Park, Hee-Seong;Kim, Ho-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.547-550
    • /
    • 2011
  • The purpose of this paper is to verify and validate the maintenance tasks of the construction of a nuclear facility using a digital mock-up and simulation technology instead of a physical mock-up. Prior to the construction of a nuclear facility, a remote simulator that provides the opportunity to produce a complete digital mock-up of the PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) region and its remote handling equipment, including operations and maintenance procedures has been developed. In this paper, the system architecture and graphic user interface of a remote simulator that coincides with the extraordinary nature of a nuclear fuel cycle facility is introduced. In order to analyze the remote accessibility of a remote manipulator, virtual prototyping that was performed it by using haptic device of external input devices under a 3D full-scale digital mock-up is explained.

The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation

  • Rodriguez, I. Merino;Hernandez-Solis, A.;Messaoudi, N.;Eynde, G. Van den
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2274-2284
    • /
    • 2020
  • The Nuclear Fuel Cycle Code "ANICCA" has been developed by SCK•CEN to answer particular questions about the Belgian nuclear fleet. However, the wide range of capabilities of the code make it also useful for international or regional studies that include advanced technologies and strategies of cycle. This paper shows the main features of the code and the facilities that can be simulated. Additionally, a comparison between several codes and ANICCA has also been made to verify the performance of the code by means of a simulation proposed in the last NEA (OECD) Benchmark Study. Finally, a case study of the Belgian nuclear fuel cycle phase out has been carried out to show the possible impact of the transmutation of the minor actinides on the nuclear waste by the use of an Accelerator Driven System also known as ADS. Results show that ANICCA accomplishes its main purpose of simulating the scenarios giving similar outcomes to other codes. Regarding the case study, results show a reduction of more than 60% of minor actinides in the Belgian nuclear cycle when using an ADS, reducing significantly the radiotoxicity and decay heat of the high-level waste and facilitating its management.

Electromagnetism Mechanism for Enhancing the Refueling Cycle Length of a WWER-1000

  • Poursalehi, Navid;Nejati-Zadeh, Mostafa;Minuchehr, Abdolhamid
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • Increasing the operation cycle length can be an important goal in the fuel reload design of a nuclear reactor core. In this research paper, a new optimization approach, electromagnetism mechanism (EM), is applied to the fuel arrangement design of the Bushehr WWER-1000 core. For this purpose, a neutronic solver has been developed for calculating the required parameters during the reload cycle of the reactor. In this package, two modules have been linked, including PARCS v2.7 and WIMS-5B codes, integrated in a solver for using in the fuel arrangement optimization operation. The first results of the prepared package, along with the cycle for the original pattern of Bushehr WWER-1000, are compared and verified according to the Final Safety Analysis Report and then the results of exploited EM linked with Purdue Advanced Reactor Core Simulator (PARCS) and Winfrith Improved Multigroup Scheme (WIMS) codes are reported for the loading pattern optimization. Totally, the numerical results of our loading pattern optimization indicate the power of the EM for this problem and also show the effective improvement of desired parameters for the gained semi-optimized core pattern in comparison to the designer scheme.

Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle (선진 핵연료주기 기술 개발을 위한 핵연료주기 분석 기술)

  • Park, Byung-Heung;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.219-230
    • /
    • 2011
  • The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.

Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO

  • Alnaqbi, Jwaher;Hartanto, Donny;Alnuaimi, Reem;Imron, Muhammad;Gillette, Victor
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.764-769
    • /
    • 2022
  • The United Arab Emirates is currently building and operating four units of the APR-1400 developed by a South Korean vendor, Korea Electric Power Corporation (KEPCO). This paper attempts to perform APR-1400 reactor core analysis by using the well-known two-step method. The two-step method was applied to the APR-1400 first cycle using the open-source nodal diffusion code, KOMODO. In this study, the group constants were generated using CASMO-4 fuel transport lattice code. The simulation was performed in Hot Zero Power (HZP) at steady-state and transient conditions. Some typical parameters necessary for the Nuclear Design Report (NDR) were evaluated in this paper, such as effective neutron multiplication factor, control rod worth, and critical boron concentration for steady-state analysis. Other parameters such as reactivity insertion, power, and fuel temperature changes during the Reactivity Insertion Accident (RIA) simulation were evaluated as well. The results from KOMODO were verified using PARCS and SIMULATE-3 nodal core simulators. It was found that KOMODO gives an excellent agreement.

Application of deep neural networks for high-dimensional large BWR core neutronics

  • Abu Saleem, Rabie;Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2709-2716
    • /
    • 2020
  • Compositions of large nuclear cores (e.g. boiling water reactors) are highly heterogeneous in terms of fuel composition, control rod insertions and flow regimes. For this reason, they usually lack high order of symmetry (e.g. 1/4, 1/8) making it difficult to estimate their neutronic parameters for large spaces of possible loading patterns. A detailed hyperparameter optimization technique (a combination of manual and Gaussian process search) is used to train and optimize deep neural networks for the prediction of three neutronic parameters for the Ringhals-1 BWR unit: power peaking factors (PPF), control rod bank level, and cycle length. Simulation data is generated based on half-symmetry using PARCS core simulator by shuffling a total of 196 assemblies. The results demonstrate a promising performance by the deep networks as acceptable mean absolute error values are found for the global maximum PPF (~0.2) and for the radially and axially averaged PPF (~0.05). The mean difference between targets and predictions for the control rod level is about 5% insertion depth. Lastly, cycle length labels are predicted with 82% accuracy. The results also demonstrate that 10,000 samples are adequate to capture about 80% of the high-dimensional space, with minor improvements found for larger number of samples. The promising findings of this work prove the ability of deep neural networks to resolve high dimensionality issues of large cores in the nuclear area.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).