• Title/Summary/Keyword: 선진 핵연료주기

Search Result 9, Processing Time 0.03 seconds

Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle (선진 핵연료주기 기술 개발을 위한 핵연료주기 분석 기술)

  • Park, Byung-Heung;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.219-230
    • /
    • 2011
  • The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

A Status of Technology and Policy of Nuclear Spent Fuel Treatment in Advanced Nuclear Program Countries and Relevant Research Works in Korea (선진 원자력발전국의 사용후핵연료 처리기술 및 정책현황과 우리나라의 관련연구 현황)

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Kwon, Kie-Chan;Lee, Won-Kyung;Lee, Eun-Pyo;Hong, Dong-Hee;Yoon, Ji-Sup;Park, Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.339-350
    • /
    • 2007
  • Status on the spent nuclear fuel management policy and R&D plan of the major countries is surveyed. Also the prospect of the future R&D plan is suggested. Recently so-called fuel cycle nations, which have the reprocess policy of the spent fuel, announced new spent fuel management policy based on the advanced fuel cycle technology. The policy is focused to transmute highly radioactive material and material having a very long half-life, and to recycle the Pu and U contained in the spent fuel. In this way the radio-foxily of the spent fuel as well as the amount of the high level waste to be eventually disposed can greatly be reduced. Most of countries selected the wet process as a primary option for the treatment of the spent fuel since the advanced wet process, which is based on the existing PUREX process, looks more feasible as compared with the dry process. The wet process, however, is much more sensitive in terms of proliferation-resistance compared with the dry process. The pure Pu can easily be obtained by simply modifying the process. On the other hand the pure Pu can not be extracted in the dry process based on the high temperature molten salt process such as a pyroprocess. Even though the pyroprocess technology is very premature, it has a great merit. Thus it is necessary for Korea to have a long term strategy for pursuing a spent fuel treatment technology with a proliferation resistance and a great merit for the GEN-IV fuel cycles. Pyroprocess is one of the best candidates to satisfy these purposes.

  • PDF

경수로 원자로 냉각재 CRUD 대표시료 채취 기술에 관한 고찰

  • Kim, Min-Jae;Kim, Jong-Bin;Gang, Deok-Won;Park, Jong-Seok
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.254-255
    • /
    • 2009
  • 국내 경수로 원전의 경우, 원전의 효율적, 경제적 운영차원에서 장주기 운전으로 패턴을 바뀌면서 핵연료봉 표면상에 크러드(crud)의 침적량은 점점 증가하는 경향을 나타내고 있다. 이러한 경향은 원자로의 출력 제어와 직결되면서 이에 대한 문제 해결을 위한 대표성이 있는 시료의 채취와 재현성이 있는 부식 생성물의 측정이 요구되어져 왔다. 원자로 계통 내에서 부식생성물의 농도변화에 대한 평가, 특히 입자농도가 증가되어지면 축방향 출력편차(Axial Offset Anomaly, AOA)가 발생될 수 있는 위험에 노출되거나, 핵연료 교체를 위해 발전소 정지시(shut down) 부식생성물의 방출이 급격히 증가되는 것으로 나타났다. 특히 입자성을 띤 물질은 존재의 특성상 이들 물질에 대한 대표시료의 채취가 어려울 뿐 아니라 grab 채취로 인해, 분석결과에 대한 재현성이 낮으며 계통 선량율의 제어와 작업자 피폭관리에 많은 어려움이 뒤따르고 있어 선진 원전 운영국에서는 앞 다투어 대표시료를 채취 할 수 있는 capillary sampling 법이나 integrated sampling법을 적용해 오고 있다. 본 논문에서는 국내 경수로 원전에서 일반적으로 사용하고 있는 grab sampling 법에 대한 문제점 파악과 해외 원전에서 사용 중인 capillary sampling 법의 국내 적용 가능성에 대해 살펴보았다.

  • PDF