DOI QR코드

DOI QR Code

Ex12 helper phage improves the quality of a phage-displayed antibody library by ameliorating the adverse effect of clonal variations

  • Choi, Hyo-Jung (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Song, Suk-Yoon (IG Therapy Co., Rm A202, Biomedical Science Building, Kangwon National University) ;
  • Yoon, Jae-Bong (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Liu, Li-Kun (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Cho, Jae-Youl (Institute of Antibody Research, Kangwon National University) ;
  • Cha, Sang-Hoon (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
  • Received : 2010.11.25
  • Accepted : 2011.01.14
  • Published : 2011.04.30

Abstract

The quality of a phage-displayed antibody library deteriorates with clonal variations, which are caused by differentially expressed Escherichia coli antibody genes. Using the human Fab SP114 against the pyruvate dehydrogenase complex-E2 (PDCE2), we created four E. coli TOP10F' clones with a pCMTG phagemid encoding Fab-pIII (pCMTG-Fab), Fd ($V_H+C_{H1}$)-pIII (pCMTG-Fd), or light chain (L) (pCMTG-L), or the vector only (pCMTG-${\Delta}Fab$) to investigate the effect of clonal variations in a defined manner. Compared to the others, the E. coli clone with pCMTG-Fab was growth retarded in liquid culture, but efficiently produced phage progenies by Ex12 helper phage superinfection. Our results suggest that an antibody library must be cultured for a short duration before helper phage superinfection, and that the Ex12 helper phage helped to alleviate the detrimental effect of clonal variation, at least in part, by preferentially increasing functional phage antibodies during phage amplification.

Keywords

References

  1. Corisdeo, S. and Wang, B. (2004) Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Prot. Exp. Purif. 34, 270-279. https://doi.org/10.1016/j.pep.2003.11.020
  2. Assazy, H. M. E. and Highsmith, W. E. (2002) Phage display technology: clinical applications and recent Innovations. Clin. Biochem. 35, 425-445. https://doi.org/10.1016/S0009-9120(02)00343-0
  3. Yamanaka, H. I., Kirii, Y. and Ohmoto, H. (1995) An improved phage display antibody cloning system using newly designed PCR primers optimized for Pfu DNA polymerase. J. Biochem. (Tokyo) 117, 1218-1227. https://doi.org/10.1093/oxfordjournals.jbchem.a124847
  4. McCafferty, J. (1996) Phage display: factors affecting panning efficiency; in Phage Display of Peptides and Proteins, A Laboratory Manual, pp. 261, Academic Press Inc., San Diego, USA.
  5. Barbs, C. F. 3rd., Kang, A. S., Lerner, R. A. and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. 88, 7978-7982. https://doi.org/10.1073/pnas.88.18.7978
  6. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P. and Winter, G. (1991) Multi- subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133-4137. https://doi.org/10.1093/nar/19.15.4133
  7. Clark, M. A., Hammond, F. R., Papaioannou, A., Hawkins, N. J. and Ward, R. L. (1997) Regulation and expression of human Fabs under the control of the Escherichia coli arabinose promoter, PBAD. Immunotechnol. 3, 217-226. https://doi.org/10.1016/S1380-2933(97)00016-X
  8. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H. R. and Pluckthun, A. (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 201, 35-55. https://doi.org/10.1016/S0022-1759(96)00208-6
  9. Dziegiel, M., Nielsen, L. K., Andersen, P. S., Blancher, A., Dickmeiss, E. and Engberg, J. (1995) Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D. J. Immunol. Methods 182, 7-19. https://doi.org/10.1016/0022-1759(95)00013-Z
  10. Marks, J. D. and Bradbury, A. (2004) Selection of human antibodies from phage display libraries. Methods Mol. Biol. 248, 161-176.
  11. Hoogenboom, H. R. and Chames, P. (2000) Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371-378. https://doi.org/10.1016/S0167-5699(00)01667-4
  12. Oh, M., Joo, H., Hur, B., Jeong, Y. and Cha, S. (2007) Enhancing phage display of antibody fragments using gIII-amber suppression. Gene 386, 81-89. https://doi.org/10.1016/j.gene.2006.08.009
  13. Ostermeier, M. and Benkovic, S. J. (2000) A two-phagemid system for the creation of non-phage displayed antibody libraries approaching one trillion members. J. Immunol. Meth. 237,175-186. https://doi.org/10.1016/S0022-1759(99)00245-8
  14. O'Connell, D., Becerril, B., Roy-Burman, A., Daws, M. and Marks, J. D. (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49-56. https://doi.org/10.1016/S0022-2836(02)00561-2
  15. Knappik, A. and Plückthun, A. (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81-89. https://doi.org/10.1093/protein/8.1.81
  16. Cabilly, S. (1989) Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in Escherichia coli. Gene 85, 553-557. https://doi.org/10.1016/0378-1119(89)90451-4
  17. De Bruin, R., Spelt, K., Mol, J., Koes, R. and Quattrocchio, F. (1999) Selection of high-affinity phage antibodies from phage display libraries. Nat. Biotechnol. 17, 397-399. https://doi.org/10.1038/7959
  18. Kretzschmar, T., Zimmermann, C. and Geiser, M. (1995) Selection procedures for nonmatured phage antibodies: a quantitative comparison and optimization strategies. Analytical. Biochem. 224, 413-419. https://doi.org/10.1006/abio.1995.1059
  19. Mutuberria, R., Hoogenboom, H. R., VanderLinden, E., DeBruine, A. P. and Roovers, R. C. (1999) Model systems to study the parameters determining the success of phage antibody selection on complex antigens. J. Immunol. Methods 231, 65-81. https://doi.org/10.1016/S0022-1759(99)00141-6
  20. Baek, H., Suk, K., Kim, Y. and Cha, S. (2002) An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res. 30(5), e18. https://doi.org/10.1093/nar/30.5.e18
  21. Cha, S., Leung, P. S. C., Coppel, R. L., VandeWater, J., Ansari, A. A. and Gershwin, M. E. (1994) Heterogeneity of combinatorial human autoantibodies against PDC-E2 and biliary epithelial cells in patients with primary biliary cirrhosis. Hepatology 20, 574-583. https://doi.org/10.1002/hep.1840200305
  22. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning. A laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  23. Cha, S., Leung, P. S. C., Gershwin, M. E., Fletcher, M. P. and Ansari, A. A. (1993) Combinatorial autoantibodies to dihydrolipoamide acetyltransferase, the major autoantigen of primary biliary cirrhosis. Proc. Natl. Acad. Sci. 90, 2527-2531. https://doi.org/10.1073/pnas.90.6.2527
  24. McCafferty, J. and Johnson, K. S. (1996) Construction and screening of antibody display libraries; in Phage Display of Peptides and Proteins. A Laboratory Manual. pp. 79, Academic Press Inc., San Diego, USA.