DOI QR코드

DOI QR Code

Functional analysis of expressed sequence tags from the liver and brain of Korean Jindo dogs

  • Kim, Jae-Young (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Hye-Sun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lim, Da-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Jang, Hong-Chul (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Hae-Suk (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Kyung-Tai (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Jong-Seok (Korean Jindo and Domestic Animals Center) ;
  • Oh, Seok-Il (Korean Jindo and Domestic Animals Center) ;
  • Kweon, Mu-Sik (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Bong-Hwan (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
  • Received : 2010.06.23
  • Accepted : 2011.01.18
  • Published : 2011.04.30

Abstract

We generated 16,993 expressed sequence tags (ESTs) from two libraries containing full-length cDNAs from the brain and liver of the Korean Jindo dog. An additional 365,909 ESTs from other dog breeds were identified from the NCBI dbEST database, and all ESTs were clustered into 28,514 consensus sequences using StackPack. We selected the 7,305 consensus sequences that could be assembled from at least five ESTs and estimated that 12,533 high-quality single nucleotide polymorphisms (SNPs) were present in 97,835 putative SNPs from the 7,305 consensus sequences. We identified 58 Jindo dog-specific SNPs in comparison to other breeds and predicted seven synonymous SNPs and ten non-synonymous SNPs. Using PolyPhen, a program that predicts changes in protein structure and potential effects on protein function caused by amino acid substitutions, three of the non-synonymous SNPs were predicted to result in changes in protein function for proteins expressed by three different genes (TUSC3, ITIH2, and NAT2).

Keywords

References

  1. Cruz, F., Vila, C. and Webster, M. T. (2008) The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol. Biol. Evol. 25, 2331-2336. https://doi.org/10.1093/molbev/msn177
  2. Palmer, L. E., O'Shaughnessy, A. L., Preston, R. R., Santos, L., Balija, V. S., Nascimento, L. U., Zutavern, T. L., Henthorn, P. S., Hannon, G. J. and McCombie, W. R. (2003) A survey of canine expressed sequence tags and a display of their annotations through a flexible web-based interface. J. Hered. 94, 15-22. https://doi.org/10.1093/jhered/esg003
  3. Lindblad-Toh, K., et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803-819. https://doi.org/10.1038/nature04338
  4. Ostrander, E. A. and Wayne, R. K. (2005) The canine genome. Genome Res. 15, 1706-1716. https://doi.org/10.1101/gr.3736605
  5. Frentiu, F. D., Adamski, M., McGraw, E. A., Blows, M. W. and Chenoweth, S. F. (2009) An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies. BMC Genomics 10, 40. https://doi.org/10.1186/1471-2164-10-40
  6. Picoult-Newberg, L., Ideker, T. E., Pohl, M. G., Taylor, S. L., Donaldson, M. A., Nickerson, D. A. and Boyce-Jacino, M. (1999) Mining SNPs from EST databases. Genome Res. 9, 167-174.
  7. Barbazuk, W. B., Emrich, S. J., Chen, H. D., Li, L. and Schnable, P. S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910-918. https://doi.org/10.1111/j.1365-313X.2007.03193.x
  8. Hayes, B. J., Nilsen, K., Berg, P. R., Grindflek, E. and Lien, S. (2007) SNP detection exploiting multiple sources of redundancy in large EST collections improves validation rates. Bioinformatics 23, 1692-1693. https://doi.org/10.1093/bioinformatics/btm154
  9. Kwok, P. Y., Carlson, C., Yager, T. D., Ankener, W. and Nickerson, D. A. (1994) Comparative analysis of human DNA variations by fluorescence-based sequencing of PCR products. Genomics 23, 138-144. https://doi.org/10.1006/geno.1994.1469
  10. Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M. S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T. J., Lipshutz, R., Chee, M. and Lander, E. S. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077-1082. https://doi.org/10.1126/science.280.5366.1077
  11. Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P. and Collins, F. S. (1996) Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nat. Genet. 14, 441-447. https://doi.org/10.1038/ng1296-441
  12. Cadieu, E., Neff, M. W., Quignon, P., Walsh, K., Chase, K., Parker, H. G., Vonholdt, B. M., Rhue, A., Boyko, A., Byers, A., Wong, A., Mosher, D. S., Elkahloun, A. G., Spady, T. C., Andre, C., Lark, K. G., Cargill, M., Bustamante, C. D., Wayne, R. K. and Ostrander, E. A. (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-153. https://doi.org/10.1126/science.1177808
  13. Vage, J. and Lingaas, F. (2008) Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamineand serotonin-related genes. BMC Genet. 9, 10.
  14. Spady, T. C. and Ostrander, E. A. (2008) Canine behavioral genetics: pointing out the phenotypes and herding up the genes. Am. J. Hum. Genet. 82, 10-18. https://doi.org/10.1016/j.ajhg.2007.12.001
  15. Arata, S., Ogata, N., Shimozuru, M., Takeuchi, Y. and Mori, Y. (2008) Sequences and polymorphisms of the canine monoamine transporter genes SLC6A2, SLC6A3, and SLC6A4 among five dog breeds. J. Vet. Med. Sci. 70, 971-975. https://doi.org/10.1292/jvms.70.971
  16. Lesniak, A., Walczak, M., Jezierski, T., Sacharczuk, M., Gawkowski, M. and Jaszczak, K. (2008) Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs. J. Hered. 99, 518-527. https://doi.org/10.1093/jhered/esn057
  17. Huang, X. and Madan, A. (1999) CAP3: a DNA sequence assembly program. Genome Res. 9, 868-877. https://doi.org/10.1101/gr.9.9.868
  18. Nakaya, H. I., Amaral, P. P., Louro, R., Lopes, A., Fachel, A. A., Moreira, Y. B., El-Jundi, T. A., da Silva, A. M., Reis, E. M. and Verjovski-Almeida, S. (2007) Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 8, R43. https://doi.org/10.1186/gb-2007-8-3-r43
  19. Werbowetski-Ogilvie, T. E., Agar, N. Y., Waldkircher de Oliveira, R. M., Faury, D., Antel, J. P., Jabado, N. and Del Maestro, R. F. (2006) Isolation of a natural inhibitor of human malignant glial cell invasion: inter alpha-trypsin inhibitor heavy chain 2. Cancer Res. 66, 1464-1472. https://doi.org/10.1158/0008-5472.CAN-05-1913
  20. Walker, K., Ginsberg, G., Hattis, D., Johns, D. O., Guyton, K. Z. and Sonawane, B. (2009) Genetic polymorphism in N-Acetyltransferase (NAT): Population distribution of NAT1 and NAT2 activity. J. Toxicol. Environ. Health B. Crit. Rev. 12, 440-472. https://doi.org/10.1080/10937400903158383
  21. Oh, J. H., Kim, Y. S. and Kim, N. S. (2003) An improved method for constructing a full-length enriched cDNA library using small amounts of total RNA as a starting material. Exp. Mol. Med. 35, 586-590. https://doi.org/10.1038/emm.2003.77
  22. Sasako, M., Sano, T., Katai, H., Okajima, K. and Maruyama, K. (1994) Overview of clinical trials on adjuvant chemotherapy for curatively resected gastric cancer. Gan. To. Kagaku. Ryoho. 21(Suppl 3), 384-394.
  23. Dirisala, V. R., Kim, J., Park, K., Kim, N., Lee, K. T., Oh, S. J., Oh, J. H., Kim, N. S., Um, S. J., Lee, H. T., Kim, K. I. and Park, C. (2005) cSNP mining from full-length enriched cDNA libraries of the Korean native pig. Korean J. Genet. 27, 329-335.
  24. Ewing, B., Hillier, L., Wendl, M. C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175-185. https://doi.org/10.1101/gr.8.3.175
  25. Jurka, J. (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
  26. Kent, W. J. (2002) BLAT-the BLAST-like alignment tool. Genome Res. 12, 656-664. https://doi.org/10.1101/gr.229202.ArticlepublishedonlinebeforeMarch2002
  27. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  28. Christoffels, A., van Gelder, A., Greyling, G., Miller, R., Hide, T. and Hide, W. (2001) STACK: Sequence Tag Alignment and Consensus Knowledgebase. Nucleic Acids Res. 29, 234-238. https://doi.org/10.1093/nar/29.1.234
  29. Useche, F. J., Gao, G., Harafey, M. and Rafalski, A. (2001) High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform. 12, 194-203.
  30. Ramensky, V., Bork, P. and Sunyaev, S. (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894-3900. https://doi.org/10.1093/nar/gkf493
  31. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., Kondrashov, A. S. and Bork, P. (2001) Prediction of deleterious human alleles. Hum. Mol. Genet. 10, 591-597. https://doi.org/10.1093/hmg/10.6.591

Cited by

  1. Comparative RNA-Seq and Microarray Analysis of Gene Expression Changes in B-Cell Lymphomas of Canis familiaris vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061088