식물추출물 싸임화이트, 클로브버드, 계피, 라벤더, 레몬 유칼립투스 정유의 생태독성평가

Acute Ecotoxicity Evaluation of Thyme White, Clove Bud, Cassia, Lavender, Lemon Eucalyptus Essential Oil of Plant Extracts

  • 유아선 (국립농업과학원 농산물안전성부) ;
  • 최영웅 (국립농업과학원 농산물안전성부) ;
  • 정미혜 (국립농업과학원 농산물안전성부) ;
  • 홍순성 (국립농업과학원 농산물안전성부) ;
  • 박연기 (국립농업과학원 농산물안전성부) ;
  • 장희섭 (국립농업과학원 농산물안전성부) ;
  • 박재읍 (국립농업과학원 농산물안전성부) ;
  • 박경훈 (국립농업과학원 농산물안전성부)
  • You, Are-Sun (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Choi, Young-Woong (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Jeong, Mi-Hye (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Hong, Soon-Seong (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Park, Yeon-Ki (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Jang, Hui-Sub (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Park, Jae-Yup (Department of Crop Life Safety, National Academy of Agricultural Science) ;
  • Park, Kyung-Hun (Department of Crop Life Safety, National Academy of Agricultural Science)
  • 투고 : 2011.09.04
  • 심사 : 2011.10.19
  • 발행 : 2011.12.31

초록

최근에는 화학적 살충소재 보다 친환경적인 살충소재를 선호하여 천연물질을 함유한 친환경 살충제의 개발이 활발히 이루어지고 있다. 본 연구의 목적은 해충 방제에 이용할 수 있는 친환경 농자재인 식물정유(싸임화이트, 클로브버드, 계피, 라벤더, 레몬유칼립투스)의 생태독성을 평가하는 것이다. 생태독성 평가로 물벼룩(Daphina magna), 송사리(Oryzias latipes), 꿀벌(Apis mellifera L.), 지렁이(Eisenia fetida)를 이용하였다. 물벼룩급성독성시험의 경우, 싸임화이트, 클로브버드, 계피 정유의 $EC_{50}$ 값은 각각 2.5, 2.8, $6.9mg\;L^{-1}$로 EPA 기준으로 보통독성정도이었고, 라벤더, 레몬유칼립투스 정유는 $10mg\;L^{-1}$ 이상이었다. 송사리급성독성 시험의 경우, 싸임화이트와 계피 정유의 $LC_{50}$ 값이 6.7, $7.5mg\;L^{-1}$으로 나타났으며 나머지 정유는 모두 $10mg\;L^{-1}$으로 확인되었다. 꿀벌급성독성시험은 접촉과 섭식 시험으로 나누어서 실시하였고, 모든 정유의 $LD_{50}$ 값이 $100{\mu}g$ a.i $bee^{-1}$ 이상으로 확인되었다. 지렁이급성독성시험의 경우, 싸임화이트, 클로브버드, 계피, 라벤더, 레몬유칼립투스의 $LC_{50}$ 값이 각각 149, 230, 743, 234, $635mg\;kg^{-1}$로 나타났다. 결과적으로 식물 정유들의 지렁이급성독성에 대한 안전성이 확인될 경우 환경에 대한 안전성이 확보된 친환경 살충소재로서의 활용 가능성이 예상되며, 친환경 농자재 생산에 기여할 것으로 사료된다.

Environment-friendly agro-materials tend to be preferred to chemical insecticides recently. For this reason, many studies were conducted to develop environment-friendly insecticides containing natural materials. The purpose of this study was to assess ecotoxicity for 5 plant essential oils (Thyme white, Clove bud, Cassia, Lavender, Lemon eucalyptus) expected to prevent from pests and be used for agro-materials. Target species used to assess acute toxicity were aquatic invertebrate (Daphina magna), fish (Oryzias latipes), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The EC50 value, toxicological responses of thyme white, clove bud, and cassia to Daphina magna were 2.5, 2.8, and $6.9mg\;L^{-1}$ respectively and these values were moderately toxic according to standard of USEPA. $EC_{50}$ of Lavender and lemon eucalyptus were >$10mg\;L^{-1}$ then they were considered as slightly toxicity. In case of acute toxicity test to fish, $LC_{50}$ of thyme white and cassia were 6.7 and $7.5mg\;L^{-1}$ each other. The other plant essential oils indicated $LC_{50}$ >$10mg\;L^{-1}$. Acute contact and oral toxicity test to Honeybee were conducted. As a result, $LD_{50}$ of all essential oils were >$100{\mu}g$ a.i. $bee^{-1}$ in both of tests. In case of acute toxicity test to earthworm, $LC_{50}$ of thyme white, clove bud, cassia, lavender, and lemon eucalyptus were 149, 230, 743, 234, and $635mg\;kg^{-1}$, respectively. In conclusion, if the safety for earthworm is confirmed, 5 plant essential oils are expected to be use for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

키워드

참고문헌

  1. Arnason, J.T., B.J.R. Philogene., P. Morand., K. Imrie., S. Iyengar., F. Duval., C. Soucy-Breau., J.V. Scaiano., N.H. Werstiuk., B. Hasspieler. and A.E.R. Downe. (1989) Naturally occurring and synthetic thiopenes as photoactivated insecticides. In Insecticides of Plant Orgin. (Eds. J.T. Arnason, B.J.R. Philogene and P. Morand) ACS symposium series no. 387, American Chemical Society, Washington, DC. pp.164-172.
  2. Bang, K.H., Y.H. Rhee., and B.S. Min., (1997) Purification and properties of antifungal component, AF-001, from cinnamomi cortex. Kor. J. Mycology, 25:348-353.
  3. Chang, S.Y., S.J. Kang., J.P. Lee., S.Y. Park., J.H. Shin., Y.J. Jung. J.Y. Park., K.W. Ha., J.H. Park., and J.I. Park., (1998) Studies on the quality control method of cinnamomi cortex, cinnamomi ramulus and cassiae cortex interior. The Annual Report of KFDA, 2:223-232.
  4. Chung, H.R., J.Y. Lee., D.C. Kim., and W.I. Hwang. (1999) Synergistic effect of Panax ginseng and Cinnamomum cassia Blume mixture on the inhibition of cancer cell growth in vitro. J. Ginseng Res., 23:99-104.
  5. Cooke S.J., C.D. Suski., K.G. Ostrand., B.L. Tufts., D.H. Wahl. (2004) Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture 239:509-529. https://doi.org/10.1016/j.aquaculture.2004.06.028
  6. Gowda, N.K.S., V. Malathi., R.U. Suganthi. (2004) Effect of some chemical and herbal compounds on growth of Aspergillus parasiticus and aflatoxin production. Anim Feed Sci Technol 116:281-291. https://doi.org/10.1016/j.anifeedsci.2004.02.008
  7. Isman, M.B. (1999) Neem and related natural products,. In eds. by F.R. Hall, and J.J. Menn. Biopesticides use and delivery. Human Press. Totowa. pp.139-153.
  8. Jeong, E.T., M.Y. Park., E.W. Lee., U.Y. Park. and D.S. Chang. (1998a) Antimicrobial characteristics against spoilage microorganisms and food preservative effect of cinnamon (cinnamomum cassia Blume) bark extract. Kor. J. Life Sci., 8:648-653.
  9. Jeong, E.T., M.Y. Park., J.G. Lee., and D.S. Chang. (1998b) Antimicrobial activity and antimutagenesis of cinnamon (cinnamomum cassia Blume) bark extract. J. Fd Hyg. Safety, 13:337-343.
  10. Jo, H.C., K.H. Kim., S.G. Lee., Y.E. Na. and H.M. Park. (2008) Repellent and acaricidal activities against Leptotrombidium pallidum larvae of eucalyptus oil. Korean J. Appl. Entomol. 47:287-292. https://doi.org/10.5656/KSAE.2008.47.3.287
  11. Kang, S.H., M.K. Kim., D.K. Seo., G.H. Kim. (2006) Insecticidal Activity of Essential Oils against Larvae of Culex pipiens pallens. The Korean Journal of Pesticide Science. 10:43-49.
  12. Koul, O. (2004) Neem: a global perspective. In eds. by O. Koul and S. Wahab. Neem: today and in the new millennium. Kluwer Academic Press. Dordrech. pp.1-19.
  13. Mazzanti, G., L. Battinelli., and G. Salvatore. (1998) Antimicrobial properties of the linalool rich essential oil of Hyssopus officinalis L. var. decummbens (Lamiaceae). J. Flavour Frag. 13:289-294. https://doi.org/10.1002/(SICI)1099-1026(1998090)13:5<289::AID-FFJ750>3.0.CO;2-A
  14. Mytle, N, G.L. Anderson., M.P. Doyle., M.A. Smith. (2006) Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control 17:102-110. https://doi.org/10.1016/j.foodcont.2004.09.008
  15. Nishijima, H., R. Uchida., N. Kawakami., K. Shimamura., K. Kitamura. (1998) Role of endothelium and adventitia on eugenol-induced relaxation of rabbit ear artery precontracted by histamine. J Smooth Muscle Res 34.
  16. Onawunmi, G.O., W. Yisak., E.O. Ogunlana. (1984) Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf. J. Ethnopharmacology 12:279-286. https://doi.org/10.1016/0378-8741(84)90057-6
  17. Park, K.W. (2003) Herb & Aromatheraphy. Sunjimunhwasa, Seoul.
  18. Park, H.M. (2010) Plant Essential Oils and their Components: The Larvicidal Activities against Aedes aedes aegypti, Acute Toxicities on Water Flea, Daphnia magna, and AqueousResidues.
  19. Prasad R.C., B. Herzog., B. Boone., L. Sims., M. Waltner-Law. (2005) An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J Ethnopharmacol 2005, 96:295-301. https://doi.org/10.1016/j.jep.2004.09.024
  20. Saxena, R.C. (1989) Insecticides from neem. In insecticides of plant origin (J.T. Arnason, B.J.R. Philogene and P. Morand, eds.). ACS Symp. Ser. No. 387. Am. Chem. Soc. Washington, D.C., pp. 110-135.
  21. Schmutterer, H. (1980) Natural pesticides from the neem tree. Proc. 1st Int. Neem Conf. pp. 33-259.
  22. Soares, J.R., T.C. Dinis., A.P. Cunha., LM. Almeida., (1997) Antioxidant activities of some extracts of Thymus zygis. Free Radic Res. May, 26(5):469-478. https://doi.org/10.3109/10715769709084484
  23. Srinivasan K. (2005) Spices as influencers of body metabolism: an overview of three decades of research. Food Res Intern 38:77-86. https://doi.org/10.1016/j.foodres.2004.09.001
  24. Werner, I., J. Geist., M. Okihiro., P. Rosenkranz, E. Hinton. David. (2002) Effects of dietary exposure to the pyrethroid pesticide esfenvalerate on medaka (Oryzias latipes). Marine Environmental Research 54:609- 614. https://doi.org/10.1016/S0141-1136(02)00151-4
  25. Wink, M. (1993) Production and application of phytochemicals from an agricultural perspective. In Phytochemistry and Agriculture (van Beek TA, Breteler H. eds.). Clarendon Press, Oxford, pp.171-213.
  26. Yang, J.Y., J.H. Han., H.R. Kang., M.K. Hwang. and J.W. Lee., (2001) Antimicrobial effect of mustard, cinnamon, Japanese pepper and horseradish. J. Fd Hyg. Safety, 16:37-40.
  27. 농촌진흥청 농자재관리과. (2010) 농약관리법령 및 고시.훈령집(발간등록번호 11-1390000-002807-01). 환경생물 독성 시험 기준과 방법. pp.306-313. 농촌진흥청. 대한민국.
  28. 육창수 (1990) 한국 약용 식물도감. 아카데미서적, 서울 pp.590.