그래디언트와 상관관계의 국부통계를 이용한 얼굴 인식

Face Recognition Using Local Statistics of Gradients and Correlations

  • 구영애 (경북대학교 IT대학 전자공학부) ;
  • 소현주 (경북대학교 IT대학 전자공학부) ;
  • 김남철 (경북대학교 IT대학 전자공학부)
  • Ju, Yingai (School of Electronics Engineering, College of IT Engineering, Kyungpook National University) ;
  • So, Hyun-Joo (School of Electronics Engineering, College of IT Engineering, Kyungpook National University) ;
  • Kim, Nam-Chul (School of Electronics Engineering, College of IT Engineering, Kyungpook National University)
  • 투고 : 2010.09.08
  • 심사 : 2011.02.14
  • 발행 : 2011.05.25

초록

지금까지 많은 얼굴 인식 방법들이 제안되었으나, 대부분의 방법들은 특징추출 과정 없이 입력 영상을 1차원 형태의 벡터로 변형한 것을 1차원 특징 벡터로 사용하거나 또는 입력 영상 자체를 특징 매트릭스로 사용하였다. 이와같이 영상 자체를 특징으로 사용하면 조명변화가 심한 데이터베이스에서는 성능이 좋지 않는 것으로 알려져 있다. 본 논문에서는 조명변화에 효과적인 그래디언트와 상관관계의 국부통계를 이용하여 얼굴을 인식하는 방법을 제안하였다. BDIP(block difference of inverse probabilities)는 그래디언트의 국부 통계이다. 그리고 BVLC(block variation of local correlation coefficients)의 두 타입은 상관관계의 국부 통계이다. 입력영상이 얼굴인식 시스템에 들어 오면 먼저 BDIP, BVLC1, BVLC2의 특징 영상을 추출하고 융합한 후, (2D)2 PCA 변환을 거쳐 특징 매트릭스를 얻어서 훈련특징 매트릭스와의 거리를 구하여 최근린 분류기를 이용하여 얼굴 영상을 인식한다. 네 가지 얼굴 데이터베이스, FERET, Weizmann, Yale B, Yale에 대한 실험결과로부터, 제안한 방법이 실험한 여섯 가지 방법 중에서 조명과 얼굴 표정의 변화에 가장 견실하다는 것을 알 수 있었다.

Until now, many face recognition methods have been proposed, most of them use a 1-dimensional feature vector which is vectorized the input image without feature extraction process or input image itself is used as a feature matrix. It is known that the face recognition methods using raw image yield deteriorated performance in databases whose have severe illumination changes. In this paper, we propose a face recognition method using local statistics of gradients and correlations which are good for illumination changes. BDIP (block difference of inverse probabilities) is chosen as a local statistics of gradients and two types of BVLC (block variation of local correlation coefficients) is chosen as local statistics of correlations. When a input image enters the system, it extracts the BDIP, BVLC1 and BVLC2 feature images, fuses them, obtaining feature matrix by $(2D)^2$ PCA transformation, and classifies it with training feature matrix by nearest classifier. From experiment results of four face databases, FERET, Weizmann, Yale B, Yale, we can see that the proposed method is more reliable than other six methods in lighting and facial expression.

키워드

참고문헌

  1. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, "Face recognition: A literature survey," ACM Computing Surveys, vol.35, no.4, pp.399-458, Dec. 2003. https://doi.org/10.1145/954339.954342
  2. 김상룡, 기석철, "얼굴인식 기술동향", 대한전자공학회 전자공학회지, 제 26권 제 11호, 32-41쪽, 1999년.
  3. M. Turk and A. Pentland, "Face recognition using eigenfaces," Computer Visionand Pattern Recognition, pp.586-591,Jun.1991.
  4. M. S. Bartlett, J. R. Movellean, and T. J. Sejnowski, "Face recognition by independent component analysis," IEEE Trans. Neural etworks, vol.13, no.6, Nov.2002.
  5. J. Yang, D. Zhang, and J. Y. Yang, "Is ICA significantly better than PCA for face recognition?" in Proc. IEEE Int. Conf. Computer Vision, Beijing, China, Oct.17-21. 2005, vol.1, pp.198-203.
  6. J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, "Two-dimensional PCA: a new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol.26, no.1, pp.131-137, Jan.2004. https://doi.org/10.1109/TPAMI.2004.1261097
  7. 설태인, 정선태, 김상훈, 장언동, 조상원, "2차원 PCA얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식", 대한전자공학회, 전자공학회논문지-SP, 제 47권 SP편 제 1호, 35-43쪽, 2010년
  8. D. Q. Zhang and Z. H. Zhou, "(2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition," Neuro computing, letter, vol.69, no.1-3, pp.224-231, Dec. 2005.
  9. M. Savvides and V. Kumar, "Illumination normalization using logarithm transforms for face authentication," in Proc. IAPRAVBPA, pp.549-556, 2003.
  10. S. Shan, W. Gao, B. Cao, and D. Zhao, "Illumination normalization for robust face recognition against varying lighting conditions," in Proc. IEEE Workshop on AMFG, PP157-164, 2003.
  11. X. Xie and K. M. Lam, "Face recognition under varying illumination based on a 2D face shape model," Pattern recognition, vol.38,
  12. A. S. Georghiades, P. N. Belhumeur and D. W. Jacobs, "From few to many: illumination cone models for face recognition under variable illumination and pose," IEEE Tran. Pattern Anal. Mach. Intell., vol.23, no.6, pp.643-660, June.2001. https://doi.org/10.1109/34.927464
  13. H. Wang, S. Z. Li, Y. Wang, and J. Zhang, "Self quotient image for face recognition," in Proc. IEEE Int. Conf. Image Processing, Singapore, Oct. 24-27. 2004, vol.2, pp.1397-1400.
  14. T. Chen, W. Yin, X. S. Zhou, D. Comaniciu, and T. S. Huang, "Total variation models for variable illumination face recognition," IEEE Tran. Pattern Anal. Mach. Intell., vol.28, no.9, pp.1519-1524, Sep.2006. https://doi.org/10.1109/TPAMI.2006.195
  15. T. Zhang, Y. Y. Tang, B. Fang, Z. Shang, and X. Liu, "Face recognition under illumination using gradientfaces," IEEE Trans. Image Processing, vol.18, no.11, pp.2599-2606, Nov.2009. https://doi.org/10.1109/TIP.2009.2028255
  16. Y. D. Chun, N. C. Kim, and I. H. Jang, "Content-based image retrieval using multiresolution color and texture features," IEEETrans. Multimedia, vol. 10, no. 6, pp. 1073-1084, Oct.2008. https://doi.org/10.1109/TMM.2008.2001357
  17. Y. D. Chun, S. Y. Seo, and N. C. Kim, "Image retrieval using BDIP and BVLC moments," IEEE Trans. Circuits Syst. for Video Technology, vol.13, no.9, pp.951-957, Sep.2003. https://doi.org/10.1109/TCSVT.2003.816507
  18. H. J. So, M. H. Kim, Y. S. Chung, and N. C. Kim, "Face detection using sketch operators and vertical symmetry," FQAS 2006, Lecture Notes in Artificial Intelligence, vol.4027, pp.541-551, Jun.2006.
  19. T. D. Nguyen, S. H. Kim, and N. C. Kim, "An automatic body ROI determination for 3D visualization of a fetal ultrasound volume," KES 2005, Lecture Notes in Artificial Intelligence, vol.3682, no.2, pp.145-153, Sep.2005.
  20. H. J. So, M. H. Kim, and N. C. Kim, "Texture classification using wavelet-domain BDIP and BVLC features," in Proc. EUSIPCO 2009, Glasgow, Scotland, Aug.24-28.2009, pp.1117-1120.
  21. P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, "The FERET evaluation methodology for face recognition algorithms," IEEE Trans. Pattern Anal. Mach. Intell. vol. 22, no. 12, pp. 1090-1104, Oct. 2000. https://doi.org/10.1109/34.879790
  22. P. C. Hsieh and P. C. Tung, "A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition," Pattern Recognition, vol.42, no.5, pp.978-984, May.2009. https://doi.org/10.1016/j.patcog.2008.09.024
  23. Yale face database .