Optimization of the DC and RF characteristics in AlGaN/GaN HEMT

AlGaN/GaN HEMT 의 DC 및 RF 특성 최적화

  • Son, Sung-Hun (School of Electrical Engineering, Korea University) ;
  • Kim, Tae-Geun (School of Electrical Engineering, Korea University)
  • 손성훈 (고려대학교 전기전자전파공학과) ;
  • 김태근 (고려대학교 전기전자전파공학과)
  • Received : 2010.12.20
  • Accepted : 2011.08.17
  • Published : 2011.09.25

Abstract

In this paper, we investigated the characteristics of AlGaN/GaN HEMTs to optimize their DC and RF characteristics by using a two-dimensional device simulator. First, we analyzed the variation of the DC characteristics with respect to the variation of 2DEG concentrations when varying the Al mole fraction and the thickness of the AlGaN layer. Then, we examined the variation of the RF characteristics by varying the size and the location of the gate, source and drain electrodes. When the Al mole fraction increased from 0.2 to 0.45, both the transconductance and I-V characteristics increased. On the other hand, the I-V characteristics were improved but transconductance was decreased as the thickness of the AlGaN layer increased from 10nm to 50nm. In the RF characteristics, the gate length was found to be the most influential parameter, and the RF characteristics were improved when the gate length was shorten.

본 논문에서는 AlGaN/GaN HEMT의 DC 및 RF 특성을 최적화 하기위해서 2차원 소자 시뮬레이터를 이용하여 연구를 진행하였다. 먼저, AlGaN층의 두께, Al mole fraction 의 변화에 따른 2차원 전자가스 채널의 농도변화가 생기는 현상을 바탕으로 DC특성을 분석하였다. 다음 게이트, 소스, 드레인 전극의 크기와 위치 변화에 따른 RF 특성을 분석하였다. 그 결과 Al mole fraction이 0.2몰에서 0.45몰로 증가할수록 전달이득(transconductance, $g_m$) 과 I-V 특성이 향상됨을 확인하였다. 한편 AlGaN층의 두께가 10nm에서 50nm로 증가할수록 I-V특성은 향상되지만 $g_m$은 감소하는것을 확인하였다. RF 특성에서는 게이트 길이가 가장 큰 영향을 미치며 그 길이가 짧을수록 RF특성이 향상되는 것을 확인하였다.

Keywords

References

  1. M. J.Manfra, N.Weimann, Y. Baeyens, P. Roux, and D.M. Tennant, "Unpassivated AlGaN/GaN HEMTs with CW power density of 3.2W/mm at 25GHz grown by plasma-assisted MBE", IEEE Electron. Lett., Vol.39, No.8, pp. 694-695, 2003. https://doi.org/10.1049/el:20030451
  2. U. K, Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs - an overview of device operation and applications," IEEE, Vol. 90, pp. 1022-1031, 2002. https://doi.org/10.1109/JPROC.2002.1021567
  3. 정강민, 김수진, 김재무, 김희동, 김태근, "AlGaN/GaN HEMT의 분극현상에 대한 3D 시뮬레이션", 전자공학회논문지, 제 47권, 제 10호, SD편, 23-28쪽, 2010년 10월.
  4. P.M. Asbeck, E.T. Yu, S.S. Lau, G.J. Sullivan. Van Hove and J. Redwing, "Piezoelectric charge densities in AlGaN/GaN HFETs", Electron. Lett. 3, pp. 1230-1231, June 1997.
  5. S. Russo, A. D. Carlo, "Influence of the Source-Gate Distance on the AlGaN/GaN HEMT Performance.", IEEE Transactions on Electron Devices, Vol. 54, No. 5, pp.1071-1075, May., 2007. https://doi.org/10.1109/TED.2007.894614
  6. M. S. Shur, "GaN based transistors for high power applications," Solid-State Electronics, Vol. 42, pp. 2131-2138, 1998. https://doi.org/10.1016/S0038-1101(98)00208-1
  7. S.K. Davidsson, M. Gurusinghe, T.G. Andersson and H. Zirath, "The influence of composition and unintentional doping on the two-dimensional electron gas density in AlGaN/GaN heterostructure", Journal of Electronic Materials. 33, pp. 440-444, 2004. https://doi.org/10.1007/s11664-004-0199-2
  8. ATLAS Device Simulator, SILVACO Inernational 2007.
  9. A. F. M. Answer and Elias W. Faraclas, "AlGaN/GaN HEMTs: Experiment and simulation of DC characteristics," Solid-State Electronics, Vol. 50, 1998, pp. 1051-1056
  10. K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, "Experimental evaluation of impact ionization coefficients in GaN" IEEE Electron Device Lett., 20, p. 608-610, 1999. https://doi.org/10.1109/55.806100
  11. Vassil Palankovski and Rudiger Quay, Analysis and Simulation of Heterostructure Devices (Springer, Wein New York, 2004).
  12. C. H. Oxley and M. J. Uren, " Measurements of Unity Gain Cutoff Frequency and Saturation Velocity of a GaN HEMT Transistor" IEEE Trans. Electron Devices., 52, 2, p. 165-169, 2005. https://doi.org/10.1109/TED.2004.842719