DOI QR코드

DOI QR Code

Stimulatory Effect of ${\beta}$-glucans on Immune Cells

  • 투고 : 2011.07.08
  • 심사 : 2011.07.18
  • 발행 : 2011.08.30

초록

${\beta}$-Glucans are naturally occurring polysaccharides that are produced by bacteria, yeast, fungi, and many plants. Although their pharmacological activities, such as immunomodulatory, anti-infective and anti-cancer effects, have been well studied, it is still unclear how ${\beta}$-glucans exert their activities. However, recent studies on the ${\beta}$-glucans receptors shed some light on their mechanism of action. Since ${\beta}$-glucans have large molecular weights, they must bind surface receptors to activate immune cells. In this review, we summarize the immunopharmacological activities and the potential receptors of ${\beta}$-glucans in immune cells.

키워드

참고문헌

  1. Demleitner S, Kraus J, Franz G: Synthesis and antitumour activity of sulfoalkyl derivatives of curdlan and lichenan. Carbohydr Res 226;247-52, 1992. https://doi.org/10.1016/0008-6215(92)84072-Z
  2. McIntosh M, Stone BA, Stanisich VA: Curdlan and other bacterial (1-->3)-beta-D-glucans. Appl Microbiol Biotechnol 68;163-73, 2005. https://doi.org/10.1007/s00253-005-1959-5
  3. Chen J, Seviour R: Medicinal importance of fungal beta-( 1-->3), (1-->6)-glucans. Mycol Res 111;635-52, 2007. https://doi.org/10.1016/j.mycres.2007.02.011
  4. Suzuki M, Takatsuki F, Maeda YY, Hamuro J, Chihara G: Antitumor and immunological activity of lentinan in comparison with LPS. Int J Immunopharmacol 16;463-8, 1994.
  5. Zhang L, Li X, Xu X, Zeng F: Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydr Res 340;1515-21, 2005. https://doi.org/10.1016/j.carres.2005.02.032
  6. Jamois F, Ferrieres V, Guegan JP, Yvin JC, Plusquellec D, Vetvicka V: Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-beta-(1,3)-glucans and immunostimulatory effects. Glycobiology 15;393-407, 2005. https://doi.org/10.1093/glycob/cwi020
  7. Mueller A, Raptis J, Rice PJ, Kalbfleisch JH, Stout RD, Ensley HE, Browder W, Williams DL: The influence of glucan polymer structure and solution conformation on binding to (1-->3)-beta-D-glucan receptors in a human monocyte-like cell line. Glycobiology 10;339-46, 2000. https://doi.org/10.1093/glycob/10.4.339
  8. Wang Y, Zhang L, Li Y, Hou X, Zeng F: Correlation of structure to antitumor activities of five derivatives of a beta-glucan from Poria cocos sclerotium. Carbohydr Res 339;2567-74, 2004. https://doi.org/10.1016/j.carres.2004.08.003
  9. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F: Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30;2776-81, 1970.
  10. Zhou LD, Zhang QH, Zhang Y, Liu J, Cao YM: The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune- responses. Int Immunopharmacol 9;455-62, 2009. https://doi.org/10.1016/j.intimp.2009.01.010
  11. Harada K, Itashiki Y, Takenawa T, Ueyama Y: Effects of lentinan alone and in combination with fluoropyrimidine anticancer agent on growth of human oral squamous cell carcinoma in vitro and in vivo. Int J Oncol 37;623-31, 2010.
  12. Sier CF, Gelderman KA, Prins FA, Gorter A: Beta-glucan enhanced killing of renal cell carcinoma micrometastases by monoclonal antibody G250 directed complement activation. Int J Cancer 109;900-8, 2004. https://doi.org/10.1002/ijc.20029
  13. Kerekgyarto C, Virag L, Tanko L, Chihara G, Fachet J: Strain differences in the cytotoxic activity and TNF production of murine macrophages stimulated by lentinan. Int J Immunopharmacol 18;347-53, 1996. https://doi.org/10.1016/S0192-0561(96)00038-0
  14. Chan WK, Law HK, Lin ZB, Lau YL, Chan GC: Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. Int Immunol 19;891-9, 2007. https://doi.org/10.1093/intimm/dxm061
  15. Wang J, Dong S, Liu C, Wang W, Sun S, Gu J, Wang Y, Boraschi D, Qu D: beta-Glucan oligosaccharide enhances CD8(+) T cells immune response induced by a DNA vaccine encoding hepatitis B virus core antigen. J Biomed Biotechnol 2010;645213, 2010.
  16. McCormack E, Skavland J, Mujic M, Bruserud O, Gjertsen BT: Lentinan: hematopoietic, immunological, and efficacy studies in a syngeneic model of acute myeloid leukemia. Nutr Cancer 62;574-83, 2010. https://doi.org/10.1080/01635580903532416
  17. Yoshino S, Tabata T, Hazama S, Iizuka N, Yamamoto K, Hirayama M, Tangoku A, Oka M: Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers. Anticancer Res 20;4707-11, 2000.
  18. Murata Y, Shimamura T, Tagami T, Takatsuki F, Hamuro J: The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol 2;673-89, 2002. https://doi.org/10.1016/S1567-5769(01)00212-0
  19. Vetvicka V, Vetvickova J, Frank J, Yvin JC: Enhancing effects of new biological response modifier beta-1,3 glucan sulfate PS3 on immune reactions. Biomed Pharmacother 62;283-8, 2008. https://doi.org/10.1016/j.biopha.2007.05.011
  20. Brown GD, Gordon S: Immune recognition of fungal beta- glucans. Cell Microbiol 7;471-9, 2005. https://doi.org/10.1111/j.1462-5822.2005.00505.x
  21. Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R 3rd, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A: Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275; 20157-67, 2000. https://doi.org/10.1074/jbc.M909512199
  22. Adachi Y, Ishii T, Ikeda Y, Hoshino A, Tamura H, Aketagawa J, Tanaka S, Ohno N: Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun 72;4159-71, 2004. https://doi.org/10.1128/IAI.72.7.4159-4171.2004
  23. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W: Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281;5771-9, 2006. https://doi.org/10.1074/jbc.M511461200
  24. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S: Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196;407-12, 2002. https://doi.org/10.1084/jem.20020470
  25. Grunebach F, Weck MM, Reichert J, Brossart P: Molecular and functional characterization of human Dectin-1. Exp Hematol 30;1309-15, 2002. https://doi.org/10.1016/S0301-472X(02)00928-1
  26. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C: Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22;507-17, 2005. https://doi.org/10.1016/j.immuni.2005.03.004
  27. Hatada MH, Lu X, Laird ER, Green J, Morgenstern JP, Lou M, Marr CS, Phillips TB, Ram MK, Theriault K, Zoller MJ, Karas JL: Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377;32-8, 1995. https://doi.org/10.1038/377032a0
  28. Xu S, Huo J, Lee KG, Kurosaki T, Lam KP: Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem 284;7038-46, 2009. https://doi.org/10.1074/jbc.M806650200
  29. Shah VB, Ozment-Skelton TR, Williams DL, Keshvara L: Vav1 and PI3K are required for phagocytosis of beta-glucan and subsequent superoxide generation by microglia. Mol Immunol 46;1845-53, 2009. https://doi.org/10.1016/j.molimm.2009.01.014
  30. Takeda K, Akira S: TLR signaling pathways. Semin Immunol 16;3-9, 2004. https://doi.org/10.1016/j.smim.2003.10.003
  31. Lebron F, Vassallo R, Puri V, Limper AH: Pneumocystis carinii cell wall beta-glucans initiate macrophage inflammatory responses through NF-kappaB activation. J Biol Chem 278; 25001-8, 2003. https://doi.org/10.1074/jbc.M301426200
  32. Kim HS, Kim JY, Ryu HS, Shin BR, Kang JS, Kim HM, Kim YO, Hong JT, Kim Y, Han SB: Phenotypic and functional maturation of dendritic cells induced by polysaccharide isolated from Paecilomyces cicadae. J Med Food 14;847-56, 2011. https://doi.org/10.1089/jmf.2011.1575
  33. Kim HS, Kim JY, Kang JS, Kim HM, Kim YO, Hong IP, Lee MK, Hong JT, Kim Y, Han SB: Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings. Food Chem Toxicol 48;1926-33, 2010. https://doi.org/10.1016/j.fct.2010.04.036
  34. Han SB, Lee CW, Kang MR, Yoon YD, Kang JS, Lee KH, Yoon WK, Lee K, Park SK, Kim HM: Pectic polysaccharide isolated from Angelica gigas Nakai inhibits melanoma cell metastasis and growth by directly preventing cell adhesion and activating host immune functions. Cancer Lett 243;264-73, 2006. https://doi.org/10.1016/j.canlet.2005.11.040
  35. Han SB, Yoon YD, Ahn HJ, Lee HS, Lee CW, Yoon WK, Park SK, Kim HM: Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int Immunopharmacol 3;1301-12, 2003. https://doi.org/10.1016/S1567-5769(03)00118-8
  36. Han SB, Park SK, Ahn HJ, Yoon YD, Kim YH, Lee JJ, Lee KH, Moon JS, Kim HC, Kim HM: Characterization of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanum. Int Immunopharmacol 3;683-91, 2003. https://doi.org/10.1016/S1567-5769(03)00056-0
  37. Han SB, Park SH, Lee KH, Lee CW, Lee SH, Kim HC, Kim YS, Lee HS, Kim HM: Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Int Immunopharmacol 1;1969-78, 2001. https://doi.org/10.1016/S1567-5769(01)00124-2
  38. Brown GD: Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6;33-43, 2006. https://doi.org/10.1038/nri1745
  39. Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment JA, Taylor PR, Kerrigan A, Tsoni SV, Gordon S, Meyer- Wentrup F, Adema GJ, Kullberg BJ, Schweighoffer E, Tybulewicz V, Mora-Montes HM, Gow NA, Williams DL, Netea MG, Brown GD: Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol 38;500-6, 2008. https://doi.org/10.1002/eji.200737741
  40. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD: Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 156;1235-46, 1996.
  41. Xia Y, Vetvicka V, Yan J, Hanikyrova M, Mayadas T, Ross GD: The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 162;2281-90, 1999.
  42. Li B, Allendorf DJ, Hansen R, Marroquin J, Ding C, Cramer DE, Yan J: Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J Immunol 177; 1661-9, 2006. https://doi.org/10.4049/jimmunol.177.3.1661
  43. Jimenez-Lucho V, Ginsburg V, Krivan HC: Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), a possible adhesion receptor for yeasts. Infect Immun 58;2085-90, 1990.
  44. Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE: A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 273;22014-20, 1998. https://doi.org/10.1074/jbc.273.34.22014
  45. Wang J, Gigliotti F, Maggirwar S, Johnston C, Finkelstein JN, Wright TW: Pneumocystis carinii activates the NF-kappaB signaling pathway in alveolar epithelial cells. Infect Immun 73;2766-77, 2005. https://doi.org/10.1128/IAI.73.5.2766-2777.2005
  46. Acton SL, Scherer PE, Lodish HF, Krieger M: Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269;21003-9, 1994.
  47. Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL, Connelly MA, Williams DL, de la Llera-Moya M, Shaul PW, Silver DL: Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 115;969-77, 2005. https://doi.org/10.1172/JCI23858

피인용 문헌

  1. Study on the Gelation Properties of the Glucan from Sclerotium rolfsii vol.581, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amr.581-582.168
  2. A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs vol.221, pp.8, 2016, https://doi.org/10.1016/j.imbio.2016.03.006
  3. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity vol.20, pp.5, 2011, https://doi.org/10.1089/jmf.2016.0148
  4. Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-01462-4
  5. Characterization of nutrient status of Halamphora luciae (Bacillariophyceae) using matrix-assisted ultraviolet laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) vol.53, pp.3, 2018, https://doi.org/10.1080/09670262.2018.1458336
  6. Inulin Induces IL-10 Secretion and Increased FOXP3 Gene Expression in Human Peripheral Blood Mononuclear Cells vol.61, pp.None, 2011, https://doi.org/10.1590/1678-4324-2018160591
  7. β-(1→6)-d-glucan secreted during the optimised production of exopolysaccharides by Paecilomyces variotii has immunostimulatory activity vol.111, pp.6, 2011, https://doi.org/10.1007/s10482-017-1000-x
  8. Effects of the Linear Fragments of Beta-(1→3)-Glucans on Cytokine Production in vitro vol.83, pp.8, 2018, https://doi.org/10.1134/s0006297918080114
  9. Alkali treated antioxidative crude polysaccharide from Russula alatoreticula potentiates murine macrophages by tunning TLR/NF-κB pathway vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-018-37998-2
  10. Ingestion of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Risk of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms of Action vol.6, pp.None, 2011, https://doi.org/10.3389/fnut.2019.00072
  11. Acute Oral Toxicity of Vetom 21.77 Based on Duddingtonia Flagrans in Broiler Chickens vol.42, pp.1, 2011, https://doi.org/10.2478/macvetrev-2018-0031
  12. Inflammatory potential of cotton‐based surgically invasive devices: Implications for cardiac surgery vol.107, pp.6, 2011, https://doi.org/10.1002/jbm.b.34280
  13. Oral administration of oat beta-glucan preparations of different molecular weight results in regulation of genes connected with immune response in peripheral blood of rats with LPS-induced enteritis vol.58, pp.7, 2011, https://doi.org/10.1007/s00394-018-1838-3
  14. 꾸지뽕나무 배양 상황버섯 자실체 및 균사체의 면역증진 효과 vol.33, pp.5, 2019, https://doi.org/10.15188/kjopp.2019.10.33.5.275
  15. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19? vol.11, pp.None, 2011, https://doi.org/10.3389/fimmu.2020.01782
  16. Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity vol.33, pp.4, 2020, https://doi.org/10.1021/acs.chemrestox.9b00467
  17. Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity vol.33, pp.4, 2020, https://doi.org/10.1021/acs.chemrestox.9b00467
  18. Cosmeceuticals: The Principles and Practice of Skin Rejuvenation by Nonprescription Topical Therapy vol.2, pp.4, 2011, https://doi.org/10.1093/asjof/ojaa038
  19. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease vol.13, pp.2, 2011, https://doi.org/10.3390/nu13020699
  20. Vitamin D and Beta-Glucans Synergically Stimulate Human Macrophage Activity vol.22, pp.9, 2011, https://doi.org/10.3390/ijms22094869
  21. Synthetic Material Abdominal Swabs Reduce Activation of Platelets and Leukocytes Compared to Cotton Materials vol.11, pp.7, 2011, https://doi.org/10.3390/biom11071023
  22. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era vol.13, pp.11, 2021, https://doi.org/10.3390/nu13113960
  23. Investigation of TLR1-9 genes and miR-155 expression in dogs infected with canine distemper vol.79, pp.None, 2011, https://doi.org/10.1016/j.cimid.2021.101711
  24. Anticancer and Immunomodulatory Effects of Polysaccharides vol.73, pp.11, 2011, https://doi.org/10.1080/01635581.2020.1861310
  25. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants vol.276, pp.None, 2022, https://doi.org/10.1016/j.carbpol.2021.118739
  26. Botryosphaeran, [(1 → 3)(1 → 6)-β-D-glucan], induces apoptosis-like death in promastigotes of Leishmania amazonensis, and exerts a leishmanicidal effect on infected macrophages by activating NF vol.351, pp.None, 2011, https://doi.org/10.1016/j.cbi.2021.109713