DOI QR코드

DOI QR Code

Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics

  • Mosharraf, Ramin (Department of Prosthodontics and Torabinejad Dental Research Center, School of Dentistry. Isfahan University of Medical Sciences) ;
  • Rismanchian, Mansour (Department of Prosthodontics and Torabinejad Dental Research Center, School of Dentistry. Isfahan University of Medical Sciences) ;
  • Savabi, Omid (Department of Prosthodontics and Torabinejad Dental Research Center, School of Dentistry. Isfahan University of Medical Sciences, Biomaterial and Dental Material Research Group, Isfahan University of Technology) ;
  • Ashtiani, Alireza Hashemi (Department of Prosthodontics, School of Dentistry, Ahwaz University of Medical Sciences)
  • Received : 2011.10.24
  • Accepted : 2011.11.25
  • Published : 2011.12.30

Abstract

PURPOSE. Veneering porcelain might be delaminated from underlying zirconia-based ceramics. The aim of this study was the evaluation of the effect of different surface treatments and type of zirconia (white or colored) on shear bond strength (SBS) of zirconia core and its veneering porcelain. MATERIALS AND METHODS. Eighty zirconia disks (40 white and 40 colored; 10 mm in diameter and 4 mm thick) were treated with three different mechanical surface conditioning methods (Sandblasting with $110{\mu}m$ $Al_2O_3$ particle, grinding, sandblasting and liner application). One group had received no treatment. These disks were veneered with 3 mm thick and 5 mm diameter Cercon Ceram Kiss porcelain and SBS test was conducted (cross-head speed = 1 mm/min). Two and one way ANOVA, Tukey's HSD Past hoc, and T- test were selected to analyzed the data (${\alpha}=0.05$). RESULTS. In this study, the factor of different types of zirconia ceramics (P=.462) had no significant effect on SBS, but the factors of different surface modification techniques (P=.005) and interaction effect (P=.018) had a significant effect on SBS. Within colored zirconia group, there were no significant differences in mean SBS among the four surface treatment subgroups (P=0.183). Within white zirconia group, "Ground group" exhibited a significantly lower SBS value than "as milled" or control (P=0.001) and liner (P=.05) groups. CONCLUSION. Type of zirconia did not have any effect on bond strength between zirconia core and veneer ceramic. Surface treatment had different effects on the SBS of the different zirconia types and grinding dramatically decreased the SBS of white zirconia- porcelain.

Keywords

References

  1. Barnfather KD, Brunton PA. Restoration of the upper dental arch using Lava all-ceramic crown and bridgework. Br Dent J 2007;202:731-5. https://doi.org/10.1038/BDJ.2007.534
  2. Coli P, Karlsson S. Precision of a CAD/CAM technique for the production of zirconium dioxide copings. Int J Prosthodont 2004;17:577-80.
  3. Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dent Mater 2004;20:956-62. https://doi.org/10.1016/j.dental.2004.02.004
  4. Casucci A, Osorio E, Osorio R, Monticelli F, Toledano M, Mazzitelli C, Ferrari M. Influence of different surface treatments on surface zirconia frameworks. J Dent 2009;37:891-7. https://doi.org/10.1016/j.jdent.2009.06.013
  5. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33:9-18. https://doi.org/10.1016/j.jdent.2004.07.001
  6. Kim HJ, Lim HP, Park YJ, Vang MS. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 2011;105:315-22. https://doi.org/10.1016/S0022-3913(11)60060-7
  7. Bonfante EA, Coelho PG, Guess PC, Thompson VP, Silva NR. Fatigue and damage accumulation of veneer porcelain pressed on Y-TZP. J Dent 2010;38:318-24. https://doi.org/10.1016/j.jdent.2009.12.004
  8. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings--a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25:121-8. https://doi.org/10.1016/j.dental.2008.04.019
  9. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349-55. https://doi.org/10.1016/j.prosdent.2004.02.009
  10. Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent 2008;36:316-21. https://doi.org/10.1016/j.jdent.2008.01.017
  11. Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, Franz Hammerle CH. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006;37:685-93.
  12. Komine F, Saito A, Kobayashi K, Koizuka M, Koizumi H, Matsumura H. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material. J Oral Sci 2010;52:647-52. https://doi.org/10.2334/josnusd.52.647
  13. Fahmy NZ. Bond strength, microhardness, and core/veneer interface quality of an all-ceramic system. J Prosthodont 2010;19:95-102. https://doi.org/10.1111/j.1532-849X.2009.00540.x
  14. Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247-57. https://doi.org/10.1016/S0022-3913(10)60133-3
  15. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180-7. https://doi.org/10.1111/j.1365-2842.2004.01437.x
  16. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S, Mercante DE. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent 2006;96:237-44. https://doi.org/10.1016/j.prosdent.2006.08.010
  17. Guess PC, Kulis A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008;24:1556-67. https://doi.org/10.1016/j.dental.2008.03.028
  18. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CADCAM produced all-ceramic dental crowns. Dent Mater 2005;21:242-51. https://doi.org/10.1016/j.dental.2004.03.013
  19. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  20. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819-26. https://doi.org/10.1016/j.jdent.2007.07.008
  21. Drummond JL, King TJ, Bapna MS, Koperski RD. Mechanical property evaluation of pressable restorative ceramics. Dent Mater 2000;16:226-33. https://doi.org/10.1016/S0109-5641(00)00013-0
  22. Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mater J 2010;29:138-46. https://doi.org/10.4012/dmj.2009-065
  23. Chaiyabutr Y, McGowan S, Phillips KM, Kois JC, Giordano RA. The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. J Prosthet Dent 2008;100:194-202. https://doi.org/10.1016/S0022-3913(08)60178-X
  24. Fischer J, Stawarczyk B, Sailer I, Ha¨mmerle CH. Shear bond strength between veneering ceramics and ceria-stabilized zirconia/alumina. J Prosthet Dent 2010;103:267-74. https://doi.org/10.1016/S0022-3913(10)60056-X
  25. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  26. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  27. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part 3: double veneer technique. J Prosthodont 2008;17:9-13.
  28. Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247-57. https://doi.org/10.1016/S0022-3913(10)60133-3
  29. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8. https://doi.org/10.1111/j.1532-849X.2008.00306.x
  30. Curtis AR, Wright AJ, Fleming GJ. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 2006;34:195-206. https://doi.org/10.1016/j.jdent.2005.06.006
  31. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-33. https://doi.org/10.1016/S0109-5641(99)00070-6
  32. Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004;25:5045-52. https://doi.org/10.1016/j.biomaterials.2004.02.036
  33. Kern M, Barloi A, Yang B. Surface conditioning influences zirconia ceramic bonding. J Dent Res 2009;88:817-22. https://doi.org/10.1177/0022034509340881
  34. Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008;27:448-54. https://doi.org/10.4012/dmj.27.448
  35. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349-55. https://doi.org/10.1016/j.prosdent.2004.02.009
  36. Fischer J, Stawarczyk B, Trottmann A, Hammerle CH. Impact of thermal properties of veneering ceramics on the fracture load of layered Ce-TZP/A nanocomposite frameworks. Dent Mater 2009;25:326-30. https://doi.org/10.1016/j.dental.2008.08.001
  37. Chevalier J, Deville S, Munch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-45. https://doi.org/10.1016/j.biomaterials.2004.01.002
  38. Ardlin BI. Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low-temperature aging on flexural strength and surface structure. Dent Mater 2002;18:590-5. https://doi.org/10.1016/S0109-5641(01)00095-1
  39. Fischer J, Stawarczyk B, Sailer I, Hammerle CH. Shear bond strength between veneering ceramics and ceria-stabilized zirconia/alumina. J Prosthet Dent 2010;103:267-74. https://doi.org/10.1016/S0022-3913(10)60056-X
  40. Tinschert J, Schulze KA, Natt G, Latzke P, Heussen N, Spiekermann H. Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont 2008;21:217-22.
  41. Guazzato M, Albakry M, Quach L, Swain MV. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic. Dent Mater 2005;21:454-63. https://doi.org/10.1016/j.dental.2004.07.010
  42. Choi BK, Han JS, Yang JH, Lee JB, Kim SH. Shear bond strength of veneering porcelain to zirconia and metal cores. J Adv Prosthodont 2009;1:129-35. https://doi.org/10.4047/jap.2009.1.3.129

Cited by

  1. Laboratory and Clinical Considerations on Prosthetic Zirconia Infrastructures for Implants vol.22, pp.6, 2013, https://doi.org/10.1097/ID.0000000000000009
  2. Effect of intermediate ceramics and firing temperature on bond strength between tetragonal zirconia polycrystal and veneering ceramics vol.32, pp.5, 2013, https://doi.org/10.4012/dmj.2013-070
  3. Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering vol.5, pp.4, 2013, https://doi.org/10.4047/jap.2013.5.4.485
  4. Effects of coloring procedures on zirconia/veneer ceramics bond strength vol.6, pp.6, 2014, https://doi.org/10.4047/jap.2014.6.6.451
  5. Influence of veneering technique and veneer-coping thickness on fracture toughness of implant retained veneered Y-TZP zirconia crowns vol.31, pp.16, 2017, https://doi.org/10.1080/01694243.2016.1277863
  6. Experimental Evaluation of Fracture Pattern in Bilayered All-Ceramic Molar Crowns vol.376, pp.1662-9507, 2017, https://doi.org/10.4028/www.scientific.net/DDF.376.101
  7. The Effect of Surface Treatment on Shear Bond Strength between Y-TZP and Veneer Ceramic: A Systematic Review and Meta-Analysis pp.1059941X, 2018, https://doi.org/10.1111/jopr.12727
  8. Bond Strength of Veneering Ceramics to a Graded Zirconia Core vol.624, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.624.221
  9. Evaluation of mold-enclosed shear bond strength between zirconia core and porcelain veneer vol.37, pp.5, 2018, https://doi.org/10.4012/dmj.2017-339
  10. Novel Coatings on Zirconia for Improved Bonding with Veneer Ceramics vol.8, pp.10, 2018, https://doi.org/10.3390/coatings8100363
  11. The effect of zirconia surface architecturing technique on the zirconia/veneer interfacial bond strength vol.10, pp.4, 2018, https://doi.org/10.4047/jap.2018.10.4.259
  12. Femtosecond laser settings for optimal bracket bonding to zirconia pp.1435-604X, 2019, https://doi.org/10.1007/s10103-018-2589-3
  13. Influence of zirconia surface treatment on veneering porcelain shear bond strength after cyclic loading vol.112, pp.6, 2011, https://doi.org/10.1016/j.prosdent.2014.05.029
  14. Wetting Characteristics of a Nano Y-TZP Dental Ceramic by a Molten Feldspathic Veneer vol.11, pp.None, 2011, https://doi.org/10.1016/j.mspro.2015.11.038
  15. Enhancement of the Bonding Durability of Resin-based Cement to Lithium Disilicate Glass Ceramics Using Surface Modification Methods vol.27, pp.3, 2011, https://doi.org/10.15369/sujms.27.223
  16. Effect of Surface Treatments on the Bond Strength of Veneering Ceramic to Zirconia vol.13, pp.1, 2011, https://doi.org/10.5301/jabfm.5000195
  17. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding vol.36, pp.4, 2011, https://doi.org/10.4012/dmj.2016-124
  18. Shear Bond Strength Between Zirconia and Veneer Ceramic: Effect of Thermocycling and Laser Treatment vol.37, pp.7, 2011, https://doi.org/10.1089/photob.2018.4541
  19. Comparative In Vitro Evaluation Between Zirconia and Veneer Ceramic Materials Using Different Techniques vol.28, pp.11, 2019, https://doi.org/10.1007/s11665-019-04455-8
  20. Effect of thermal and mechanical cycles on shear bond strength of zirconia core to porcelain veneer under different surface treatments vol.13, pp.3, 2011, https://doi.org/10.15171/joddd.2019.035
  21. In Vitro Evaluation of Bond Strength between Zirconia Core and CAD/CAM‐Produced Veneers vol.29, pp.1, 2011, https://doi.org/10.1111/jopr.13068
  22. Does Diamond Stone Grinding Change the Surface Characteristics and Flexural Strength of Monolithic Zirconia? vol.45, pp.3, 2020, https://doi.org/10.2341/19-023-l
  23. Glass coatings to enhance the interfacial bond strength between veneering ceramic and zirconia vol.108, pp.3, 2020, https://doi.org/10.1007/s10266-020-00497-w
  24. Laser Use in Creating Orthodontic Adhesion to Ceramic Surfaces vol.11, pp.6, 2011, https://doi.org/10.3390/app11062512
  25. Evaluation of Changes in Temperature of Zirconia Frameworks During Grinding Under Different Chair-Side Conditions: An In Vitro Study vol.12, pp.1, 2021, https://doi.org/10.1177/2320206820953947
  26. Analysis of surface conditioning methods on core-veneer bond strength of CAD/CAM zirconia restorations vol.29, pp.3, 2011, https://doi.org/10.3233/thc-202539
  27. Adhesion between zirconia and resin cement: A critical evaluation of testing methodologies vol.120, pp.None, 2011, https://doi.org/10.1016/j.jmbbm.2021.104547