DOI QR코드

DOI QR Code

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System

단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구

  • Yu, Samuel (Dept. of Mechanical Engineering, Inha Univ.) ;
  • Kim, Sun-Min (Dept. of Mechanical Engineering, Inha Univ.)
  • Received : 2010.09.30
  • Accepted : 2011.01.13
  • Published : 2011.04.01

Abstract

In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

본 연구에서는 미세채널과 나노채널의 교차부에 불균형 동전기성을 이용한 미세혼합기를 개발하였다. 채널 내 용액의 혼합은 인가된 전압에 의한 전기삼투유동과 미세채널과 나노채널 교차 부에서의 불균형 동전기성에 의한 와류현상에 의해 이루어진다. 미세채널은 PDMS 을 이용하여 소프트리소그래피 공정으로 제작하였고, 나노채널은 미세채널의 특정위치에 전기적 충격에 의한 PDMS 의 파괴로 매우 간단하게 제작하였다. 혼합성능을 평가하기 위하여 형광물질인 Rhodamine B 용액을 이용하여 혼합 전과 후의 형광 분포를 분석하였으며, 약 90%의 혼합을 얻을 수 있었다. 본 연구의 미세혼합기는 복잡한 공정을 요구하지 않고 매우 간단하게 제작되었으며, 생화학시료 분석을 위한 미세시스템에 활용될 수 있다.

Keywords

References

  1. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., 2007, "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel,” Physical Review Letters, Vol. 99, No. 4, 044501. https://doi.org/10.1103/PhysRevLett.99.044501
  2. Kim, D., Raj, A., Zhu, L., Masel, R. I. and Shannon, M. A., 2008, "Non-Equilibrium Electro-kinetic Micro/Nano Fluidic Mixer," Lab on a Chip, Vo1. 8, No. 4, pp. 625-628. https://doi.org/10.1039/b717268k
  3. Nguyen, N. T. and Wu, Z., 2005, "Micromixers- a Review," Journal of Micromechanics and Microengine ering, Vol. 15, No. 2, pp. R1-R16. https://doi.org/10.1088/0960-1317/15/2/R01
  4. Hessel, V., Lowe, H. and Schonfeld, F., 2005, "Micromixers- a Review on Passive and Active Mixing Principles," Chemical Engineering Science, Vol. 60, No. 8-9, pp. 2479-2501. https://doi.org/10.1016/j.ces.2004.11.033
  5. Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezi, I., Stone, H. A., Whitesides, G. M., 2002, "Chaotic Mixer for Microchannels," Science, Vol. 295, No. 5555, pp. 647-651. https://doi.org/10.1126/science.1066238
  6. Yang, J. T., Huang, K. J. and Lin, Y. C., 2005, "Geometric Effects on Fluid Mixing in Passive Grooved Micromixers" Lab Chip Vol. 5, No. 10, pp. 1140-1147. https://doi.org/10.1039/b500972c
  7. Wong, S. H., Ward, M. C. L. and Wharton, C. W., 2004, "Micro T-mixer as A Rapid Mixing Micromixer," Sensors and Actuators B, Vol. 100, No. 3, pp. 359-379. https://doi.org/10.1016/j.snb.2004.02.008
  8. Sasaki, N., Kitamori, T. and Kim, H. B., 2006, "AC Electroosmotic Micromixer for Chemical Processing in A Microchannel," Lab Chip Vol. 6, No. 4, pp. 550-554. https://doi.org/10.1039/b515852d
  9. Oddy, M. H., Santiago, J. G. and Mikkelsen, J. C., 2001, "Electrokinetic Instability Micromixing," Anal. Chem. Vol. 73, No. 24, pp. 5822-5832. https://doi.org/10.1021/ac0155411
  10. Yu, H., Lu, Y., Zhou, Y., Wang, F., He, F. and Xia, X., 2008, "A Simple, Disposable Microfluidic Device for Rapid Protein Concentration and Purification via Direct-Printing," Lab on a Chip, Vol. 8, No. 9 pp. 1496-1501. https://doi.org/10.1039/b802778a
  11. McDonald, J. C., Metallo, S. J. and White sides, G. M., 2001, "Fabrication of A Configurable, Single-Use Microfluidic Device," Anal. Chem., Vol. 73, No. 23, pp. 5645-5650. https://doi.org/10.1021/ac010631r
  12. Lee, J. H., Chung, S., Kim, S. J. and Han, J., 2007, "Poly(dimethylsiloxane)-Based Protein Preconcentrati on Using a Nanogap Generated by Junction Gap Break Down," Anal. Chem., Vol. 79, No. 17, pp. 6868-6873. https://doi.org/10.1021/ac071162h
  13. Pu, Q., Yun, J., Temkin, H., Liu, S., 2004, "Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures", Nano Lett., Vol. 4, No. 6, pp. 1099-1103. https://doi.org/10.1021/nl0494811
  14. Kim, S. M., Burns, M. A., Hasselbrink, E. F., 2006, "Electrokinetic Protein Preconcentration Using Simple Glass/Poly (dimethylsiloxane) Microfluidic Chip," Anal. Chem. Vol. 78, No. 14, pp. 4779-4785.
  15. Wang, Y. C., Han, J., 2008, "Pre-Binding Dynamic Range and Sensitivity Enhancement for Immuno-sen sors Using Nanofluidic Preconcentrator," Lab on a chip, Vol. 8, No. 3, pp. 392-394. https://doi.org/10.1039/b717220f