DOI QR코드

DOI QR Code

Herbicidal Properties of 5,8-dihydroxy-1,4-naphthoquinone and Their Possible Mode of Action

천연물 유래 5,8-dihydroxy-1,4-naphthoquinone의 살초특성과 작용기구

  • Choi, Jung-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Ji-Yeon (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Bo-Ram (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Ko, Young-Kwan (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Cha, Mi-Ran (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Shi-Yong (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Hwang, In-Taek (Green Chemistry Division, Korea Research Institute of Chemical Technology)
  • 최정섭 (한국화학연구원 그린화학연구본부) ;
  • 김지연 (한국화학연구원 그린화학연구본부) ;
  • 서보람 (한국화학연구원 그린화학연구본부) ;
  • 고영관 (한국화학연구원 그린화학연구본부) ;
  • 차미란 (한국화학연구원 그린화학연구본부) ;
  • 김영섭 (한국화학연구원 그린화학연구본부) ;
  • 류시용 (한국화학연구원 그린화학연구본부) ;
  • 황인택 (한국화학연구원 그린화학연구본부)
  • Received : 2011.09.08
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

This study was conducted to assess the possibility of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) as a environmental friendly herbicide candidate. Foliar application of DHNQ showed excellent herbicidal effect to the 3 grasses and 5 broad-leaved weeds. Among them, Digitaria sanguinalis and Solanum nigrum were completely controlled by $250{\mu}g\;mL^{-1}$ of DHNQ with main symptoms of desiccation or burndown within 24 hours. Aeschynomene indica was also sensitive to DHNQ treatment. All of the eight weed species were controlled by 90~100% at a concentration of $1000{\mu}g\;mL^{-1}$. However, soil application of DHNQ to Digitaria sanguinalis did not show any herbicidal symptoms. DHNQ strongly inhibited KAPAS activities in vitro and the $IC_{50}$ was $4.4{\mu}M$. Cellular leakage from cucumber leaf squares treated with DHNQ increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the DHNQ. According to above results, DHNQ is a good natural herbicide candidate having a new target KAPAS, which is involved in biotin biosynthesis pathway, with environmental friendly.

본 실험은 식물에서 유래한 천연 naphthoquinone계 5,8-dihydroxy-1,4-naphthoquinone(DHNQ)의 온실조건에서의 제초활성 정도를 평가하고 효소활성 저해를 포함한 생리 생화학적인 규명을 통해 살초특성을 알아보고자 수행하였다. 온실조건에서 바랭이(Digitaria sanquinalis)에 대한 경엽처리에서 DHNQ 125, 250, 500 및 $1000{\mu}g\;mL^{-1}$ 농도에서의 활성정도는 각각 60, 70, 95 및 100%이었다. 돌피를 포함한 화본과 잡초 3종과 까마중을 포함한 5종의 광엽 잡초에 대한 살초활성 평가에서 2,000 및 $1000{\mu}g\;mL^{-1}$ 농도에서는 완전방제되었고, $500{\mu}g\;mL^{-1}$ 수준에서는 70~100%이었다. 주요 증상은 화염상(burndown)이었고, 약제 처리 24시간 이내에 활성이 나타나 속효성이지만 완전하게 방제되지 않은 개체에서는 처리 5일 이후에 재생되었다. DHNQ를 처리했을 때 KAPAS를 농도의존적으로 저해하였으며, 50% 저해농도는 $4.4{\mu}M$이었다. 엽절편으로부터의 전해물질 누출은 광 암 조건에 관계없이 농도 의존적으로 증가되었으나 누출된 총량은 상대적으로 적었다. DHNQ은 광 암 조건에 관계없이 엽록소 함량 감소는 거의 일어나지 않았다. 한편, DHNQ에 의해 억제되었던 애기장대 종자 발아율은 biotin을 공급해 줌으로서 크게 증가되었다. 이상의 실험에 결과에 의하면 천연 naphthoquinone계 DHNQ는 식물체 내로의 흡수 또는 침투성을 증가시킬 수 있는 제형개발을 통해 살초력을 증가시킬 수 있는 방안이 강구된다면 신규 제초제 작용점으로 발굴한 KAPAS를 효과적으로 저해하는 친환경적인 천연물 유래 제초제로서의 가능성을 확인하였다.

Keywords

References

  1. Abell, L. M. 1996. Biochemical approaches to herbicide discovery : advances in enzyme target identification and inhibitor design. Weed Sci. 44:734-742.
  2. Alban, C., D. Job and R. Dource. 2000. Biotin metabolism in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:17-47. https://doi.org/10.1146/annurev.arplant.51.1.17
  3. Allan, E. J., and M. W. Fowler. 1985. Biologically active plant secondary metabolites perspectives for the future. Chemistry and Industry pp. 408-410.
  4. Ashkenazi, T., A. Widberg, A. Nudleman, V. Wittenbach and D. Flint. 2005. Inhibitors of biotin biosynthesis as potential herbicides : Part 2, Pestci. Manag. Sci. 61(10):1024-1033. https://doi.org/10.1002/ps.1075
  5. Bainard, L. D., and M. B. Isman. 2006. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54:833-837. https://doi.org/10.1614/WS-06-039R.1
  6. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig and H. Zahner. 1972. Stoffwechselproduct von Mikroorganismen 98. Mitteilung(1) Phosphinothricin und phosphinothrithyl-alanyl-alanin. Helvetica Chimica Acta. 55:224-239. https://doi.org/10.1002/hlca.19720550126
  7. Cho, K. M., X. H. An, J. K. Chon, H. S. Kim and J. C. Chun. 2010. Foliage contact herbicidal activity of dehydrocostus lactone derived from Saussurea lappa. Korean J. Weed Sci. 30(4):421-428. https://doi.org/10.5660/KJWS.2010.30.4.421
  8. Choi, J. S., H. Y. Song, S. J. Cho, M. S. Park, N. J. Park, D. H. Lee, H. G. Hahn and I. T. Hwang. 2007. Mechanism action of KAPAS inhibitor on new herbicidal target site. Korean J. Weed Sci. 30(Sub. 2):39-40.
  9. Choi, J. S., C. M. Ryu, B. S. Han, D. H. Lee and I. T. Hwang. 2011. Biochemical crop protecting agents for LOHAS. Korean Industrial Chemistry News 24(4):29-40.
  10. Copping, L., and S. O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Sci. 63:524-554. https://doi.org/10.1002/ps.1378
  11. Duke, S. O., H. K. Abbas, T. Amagasa and T. Tanaka. 1996. Phytotoxins of microbial origin with potential for use as herbicides, in Copping. LG (ed.), Crop Protection Agents from Nature : Natural Production and Analogues. Critical Reviews on Applied Chemistry, Vol. 35. Society for Chemical Industries, Cambridge, UK. pp. 82-113.
  12. Fukuda, M., Y. Tsujino, T. Fujimori, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids I : effect on cell constituents. Pestci. Biochem. Physiol. 80:143-150. https://doi.org/10.1016/j.pestbp.2004.06.011
  13. Goncalves, S., M. Ferraz and A. Romano. 2009. Phytotoxic properties of Drosophyllum lusitanicum leaf extracts and its main compound plumbagin. Sci. Hortic. 122:96-101. https://doi.org/10.1016/j.scienta.2009.03.028
  14. Hiscox, J. D., and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57:1332-1334. https://doi.org/10.1139/b79-163
  15. Hong, S. Y., J. S. Choi and S. M. Kim. 2011. Herbicidal activity of essential oil from palmarosa (Cymbopogon martini). Korean J. Weed Sci. 31(1):96-102. https://doi.org/10.5660/KJWS.2011.31.1.096
  16. Hwang, I. T., D. H. Lee, J. S. Choi, Y. K. Min, T. J. Kim, J. H. Ko, T. H. Kim, Y. S. Park, K. Y. Cho and S. W. Lee. 2003. Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide. Patent No. PCT/KR2003/001301.
  17. Hwang, I. T., J. S. Choi, H. Y. Song, S. J. Cho, H. K. Lim, N. J. Park and D. H. Lee. 2010. Validation of 7-keto-8-aminopelargonic acid synthase as a potential herbicide target with lead compound triphenyltin acetate. Pestci. Biochem. Physiol. 97:24-31. https://doi.org/10.1016/j.pestbp.2009.11.010
  18. Jang, H. J., and K. W. Kim. 2010. Isolation of herbicidal compound from bulbs of Lycoris chinensis var. sinuolata. Korean J. Weed Sci. 30(4):437-444. https://doi.org/10.5660/KJWS.2010.30.4.437
  19. Kenyon, W. H., S. O. Duke and K. C. Vaughn. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucumber cotyledon discs. Pestci. Biochem. Physiol. 24:240-250. https://doi.org/10.1016/0048-3575(85)90134-8
  20. Kim, K. W., J. G. Shin and J. S. Kim. 2002. Isolation and identification of plant growth retardants from Atractylodes japonica Rhizome. Korean J. Weed Sci. 22(4):385-391.
  21. Kim, H. Y., H. J. Choi, D. S. Kim, S. J. Heo and Songmun Kim. 2003. Isolation of new herbicidal compound chrysophanic acid from red sorrel (Rumex acetosella L.). Korean J. Weed Sci. 23(4):301-309.
  22. Lee, H. B., C. J. Kim, J. S. Kim, K. S. Hong and K. Y. Cho. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycetes strain Streptomyces sp. 8E- 12. Letters in Applied Microbiol. 36:387-391. https://doi.org/10.1046/j.1472-765X.2003.01327.x
  23. Lederer, B., T. Fujimori, Y. Tsujino, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids II : peroxidation and membrane effects. Pestci. Biochem. Physiol. 80:151-156. https://doi.org/10.1016/j.pestbp.2004.06.010
  24. Lydon, J., and S. O. Duke. 1999. Inhibition of glutamine synthesis. In : Singh BK (ed.), Plant Amino Acids : Biochemistry and Biotechnology. Marcel Dekker, New York, pp. 445-464.
  25. Meinke, D. W. 1985. Embryo-lethal mutants of Arabidopsis thaliana : analysis of mutants with a wide range of lethal phases. Theor. Appl. Genet. 72:543-552.
  26. Meyer, J. J. M., F. Van der Kooy and A. Joubert. 2007. Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. S. Afr. J. Bot. 73:654-656. https://doi.org/10.1016/j.sajb.2007.05.010
  27. Patton, D. A., A. L. Schetter, K. H. Franzmann, K. Nelson, E. R. Ward and D. W. Meinke. 1998. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol. 116:935-946. https://doi.org/10.1104/pp.116.3.935
  28. Pillmoor, J. B., S. D. Lindell, G. G. Briggs and K. Wright. 1995. The influences of molecular mechanisms of action on herbicide design. In : N. N. Ragsdale, P. C. Kearney, J. R. Plimmer (Eds). Processing of the Eighth of the English International Congress of Pesticide Chemistry, America Chemical Society, Washington, DC, pp. 292-303.
  29. Ploux, O., and A. Marquet. 1992. The 8-amino-7-oxopelargonate synthase from Bacillus sphaericus. Purification and preliminary characterization of the cloned enzyme overproduced in Escherichia coli. Biochem. J. 283:327-331. https://doi.org/10.1042/bj2830327
  30. Prisbylla, M. P., B. C. Onisko, J. M. Shribbs, D. O. Adams, Y. Liu, M. K. Ellis, T. R. Hawkes and L. C. Mutter. 1993. The novel mechanism of action of the herbicidal triketones. Proc. Brighton Crop Prot. Conf.-Weeds 2:731-738.
  31. Putnam, A. R. 1988. Allelochemicals from plant as herbicides. Weed Tech. 2:510-518. https://doi.org/10.1017/S0890037X00032371
  32. Quarles, W. 1999. Non-toxic weed control in the lawn and garden. Common Sense Pest Cont. Quarter Summer. pp. 4-14.
  33. Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press, Orlando, Florida, pp. 266-291.
  34. Riches, C. R., J. C. Casely, B. E. Valverde and V. M. Down. 1996. Resistance of Echinochloa colona to ACCase inhibiting herbicides. Proc. International Symposium on Weed and Crop Resistance to Herbicides. EWRS, Cordoba, Spain. pp. 14-16.
  35. Satoh, A., T. Murakami, H. Takebe, S. Imai and H. Seto. 1993. Industrial development of bialaphos, a herbicide from metabolites of Streptomyces hygropicus SF 1293. Actinomyceteologica 7:128-132. https://doi.org/10.3209/saj.7_128
  36. Schultz, A., O. Art, P. Beyer and H. Kleing. 1993. SC-0051, a 2-benzoylcyclo hexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyrubate dioxygenase. FEBS Lett. 316:162-16637.
  37. Tachibana, T., T. Watanabe, Y. Sekizawa and T. Takematsu. 1986. Inhibition of glutamine synthetase and quantative changes of free amino acids in shoots of bialaphos treated Japanese barnyard millet. Journal of Pesticide Sci. 11:27-31. https://doi.org/10.1584/jpestics.11.27
  38. Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425-431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO
  39. Uddin, M. R., O. J. Won and J. Y. Pyon. 2010. Herbicidal effects and crop selectivity of sorgoleone, a sorghum root exudate under greenhouse and field conditions. Korean J. Weed Sci. 30(4):412-420. https://doi.org/10.5660/KJWS.2010.30.4.412
  40. Webster, S. P., D. Alexeev, D. J. Campopiano, R. M. Watt, M. Alexeeva, L. Sawyer and R. L. Baxter. 2000. Mechanism of 8-Amino-7-oxononanoate synthase : spectroscopic, kinetic, and crystallographic studies. Biochemistry 39:516-528. https://doi.org/10.1021/bi991620j
  41. Wolfang, L., F. Bornke, A. Reindl, T. Ehrhardt, M. Stitt and U. Sonnewald. 2004. Target-based discovery of novel herbicides. Curr. Opin. Plant Biol. 7(2):219-225. https://doi.org/10.1016/j.pbi.2004.01.001