DOI QR코드

DOI QR Code

Herbicidal Activity and KAPAS Inhibition of Juglone with Potential as Natural Herbicide

천연 Naphthoquinone계 Juglone의 KAPAS 저해 및 제초활성 특성

  • Choi, Jung-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Lim, Hee-Kyung (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Bo-Ram (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Chun-Whan (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Sup (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Shi-Yong (Green Chemistry Division, Korea Research Institute of Chemical Technology)
  • 최정섭 (한국화학연구원 그린화학연구본부) ;
  • 임희경 (한국화학연구원 그린화학연구본부) ;
  • 서보람 (한국화학연구원 그린화학연구본부) ;
  • 김진석 (한국화학연구원 그린화학연구본부) ;
  • 최춘환 (한국화학연구원 그린화학연구본부) ;
  • 김영섭 (한국화학연구원 그린화학연구본부) ;
  • 류시용 (한국화학연구원 그린화학연구본부)
  • Received : 2011.09.08
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

The potential of juglone a plant naphthoquinone as a natural herbicide on new target, 7-keto-8-amino pelargonic acid synthetase (KAPAS) in the early step of biotin biosynthesis pathway, was performed in vitro and in vivo. Juglone effectively inhibited KAPAS activities in vitro and the $IC_{50}$ was $9.5{\mu}M$. Foliar application of juglone showed very good herbicidal activity to the eight-tested weed species. Among them, Solanum nigrum was completely controlled at a concentration of $250{\mu}g\;mL^{-1}$ with main symptoms of desiccation or burndown. Digitaria sanguinalis and Aeschynomene indica were also sensitive to juglone treatment. All eight weed species were controlled by 90~100% at a concentration of $500{\mu}g\;mL^{-1}$. However, soil application of juglone to Digitaria sanguinalis did not show any herbicidal symptoms. Cellular leakage from cucumber leaf squares treated with juglone increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the juglone. Our results suggest that the juglone is a possible environmental friendly herbicide candidate with a new target KAPAS inhibiting activity.

식물 유래 naphthoquinone계 juglone의 신규 제초제 작용점 KAPAS에 대한 in vitro 및 in vivo에서의 활성 평가를 통해 천연물 유래 제초제로서의 가능을 검토하였다. Juglone은 농도의존적인 반응으로 KAPAS를 효과적으로 저해하였으며, 50% 저해농도는 $9.5{\mu}M$이었다. 바랭이(Digitaria sanquinalis)에 대한 경엽처리에서 juglone 125, 250, 500 및 $1000{\mu}g\;mL^{-1}$ 농도에서의 활성정도는 각각 70, 95, 100 및 100%이었다. 또한, 8종의 화본과 및 광엽잡초에 대한 juglone 2,000 및 $1000{\mu}g\;mL^{-1}$ 농도에서의 살초력은 완전하였으며(100%), $500{\mu}g\;mL^{-1}$에서도 90~100%이었다. Juglone을 처리했을 때 나타나는 주요 증상은 고사(desiccation) 또는화염상(burndown)이었다. Juglone 처리에 의한 전해물질 누출은 광조건에 관계없이 농도의존적으로 일어났으나, 엽록소 함량 감소 정도는 광조건에서도 경미한 수준이었으며, 암 조건에서는 전혀 일어나지 않았다. Juglone에 의해 억제되었던 애기장대 종자의 발아율은 biotin 공급에 의해 뚜렷하게 회복되었다. 이상의 실험에 결과에 의하면 천연 naphthoquinone계 juglone은 신규 제초제 작용점 KAPAS를 효과적으로 저해하는 친환경적인 천연물 유래 제초제로서의 가능성을 확인하였다.

Keywords

References

  1. Abell, L. M. 1996. Biochemical approaches to herbicide discovery : advances in enzyme target identification and inhibitor design. Weed Sci. 44:734-742.
  2. Alban, C., D. Job and R. Dource. 2000. Biotin metabolism in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:17-47. https://doi.org/10.1146/annurev.arplant.51.1.17
  3. Allan, E. J., and M. W. Fowler. 1985. Biologically active plant secondary metabolites perspectives for the future. Chemistry and Industry. pp. 408-410.
  4. Ashkenazi, T., A. Widberg, A. Nudleman, V. Wittenbach and D. Flint. 2005. Inhibitors of biotin biosynthesis as potential herbicides : Part 2, Pestci. Manag. Sci. 61(10):1024-1033. https://doi.org/10.1002/ps.1075
  5. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig and H. Zahner. 1972. Stoffwechselproduct von Mikroorganismen 98. Mitteilung(1) Phosphinothricin und phosphinothrithyl-alanyl-alanin. Helvetica Chimica Acta. 55:224-239. https://doi.org/10.1002/hlca.19720550126
  6. Cho, K. M., X. H. An, J. K. Chon, H. S. Kim and J. C. Chun. 2010. Foliage contact herbicidal activity of dehydrocostus lactone derived from Saussurea lappa. Korean J. Weed Sci. 30(4):421-428. https://doi.org/10.5660/KJWS.2010.30.4.421
  7. Copping, L., and S. O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Sci. 63:524-554. https://doi.org/10.1002/ps.1378
  8. Duke, S. O., H. K. Abbas, T. Amagasa and T. Tanaka. 1996. Phytotoxins of microbial origin with potential for use as herbicides, in Copping. LG (ed.), Crop Protection Agents from Nature : Natural Production and Analogues. Critical Reviews on Applied Chemistry, Vol. 35. Society for Chemical Industries, Cambridge, UK. pp. 82-113.
  9. Fukuda, M., Y. Tsujino, T. Fujimori, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids I : effect on cell constituents. Pestci. Biochem. Physiol. 80:143-150. https://doi.org/10.1016/j.pestbp.2004.06.011
  10. Goncalves, S., M. Ferraz and A. Romano. 2009. Phytotoxic properties of Drosophyllum lusitanicum leaf extracts and its main compound plumbagin. Sci. Hortic. 122:96-101. https://doi.org/10.1016/j.scienta.2009.03.028
  11. Hiscox, J. D., and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57:1332-1334. https://doi.org/10.1139/b79-163
  12. Hofgen. R. 1998. Antisense gene expression as a tool for evaluating molecular herbicide targets. Extended summaries-8th International Congress of Pesticide Chemistry, 175-177.
  13. Hong, S. Y., J. S. Choi and S. M. Kim. 2011. Herbicidal activity of essential oil from Palmarosa(Cymbopogon martini). Korean J. Weed Sci. 31(1):96-102. https://doi.org/10.5660/KJWS.2011.31.1.096
  14. Hwang, I. T., D. H. Lee, J. S. Choi, Y. K. Min, T. J. Kim, J. H. Ko, T. H. Kim, Y. S. Park, K. Y. Cho and S. W. Lee. 2003. Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide. Patent No. PCT/KR2003/001301.
  15. Hwang, I. T., J. S. Choi, H. Y. Song, S. J. Cho, H. K. Lim, N. J. Park and D. H. Lee. 2010. Validation of 7-keto-8-aminopelargonic acid synthase as a potential herbicide target with lead compound triphenyltin acetate. Pestci. Biochem. Physiol. 97:24-31. https://doi.org/10.1016/j.pestbp.2009.11.010
  16. Jang, H. W. B. R. Seo, H. J. Hwang, J. D. Kim, J. S. Kim, S. M. Kim, J. C. Chun and J. S. Choi. 2010. Herbicidal activity of natural product chrysophanic acid. Korean J. Weed Sci. 30(2):143-152. https://doi.org/10.5660/KJWS.2010.30.2.143
  17. Kenyon, W. H., S. O. Duke and K. C. Vaughn. 1985. Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucumber cotyledon discs. Pestci. Biochem. Physiol. 24:240-250. https://doi.org/10.1016/0048-3575(85)90134-8
  18. Kim, K. W., J. G. Shin and J. S. Kim. 2002. Isolation and identification of plant growth retardants from Atractylodes japonica rhizome. Korean J. Weed Sci. 22(4):385-391.
  19. Kim, H. Y., H. J. Choi, D. S. Kim, S. J. Heo and Songmun Kim. 2003. Isolation of new herbicidal compound chrysophanic acid from red sorrel (Rumex acetosella L.). Korean J. Weed Sci. 23(4):301-309.
  20. Kim, K. W., J. K. Baek and J. S. Kim. 2005. Isolation of herbicidal compounds from the fruit of Zanthoxylum schinifolium S. et. Z. Korean J. Weed Sci. 25(3):194-201.
  21. Lee, H. B., C. J. Kim, J. S. Kim, K. S. Hong and K. Y. Cho. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycetes strain Streptomyces sp. 8E- 12. Letters in Applied Microbiol. 36:387-391. https://doi.org/10.1046/j.1472-765X.2003.01327.x
  22. Lederer, B., T. Fujimori, Y. Tsujino, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids II : peroxidation and membrane effects. Pestci. Biochem. Physiol. 80:151-156. https://doi.org/10.1016/j.pestbp.2004.06.010
  23. Lydon, J., and S. O. Duke. 1999. Inhibition of glutamine synthesis. In : Singh BK (ed.), Plant Amino Acids : Biochemistry and Biotechnology. Marcel Dekker, New York, pp. 445-464.
  24. Meinke, D. W. 1985. Embryo-lethal mutants of Arabidopsis thaliana : analysis of mutants with a wide range of lethal phases. Theor. Appl. Genet. 72:543-552.
  25. Meyer, J. J. M., F. Van der Kooy and A. Joubert. 2007. Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. S. Afr. J. Bot. 73:654-656. https://doi.org/10.1016/j.sajb.2007.05.010
  26. Patton, D. A., A. L. Schetter, K. H. Franzmann, K. Nelson, E. R. Ward and D. W. Meinke. 1998. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol. 116:935-946. https://doi.org/10.1104/pp.116.3.935
  27. Pillmoor, J. B., S. D. Lindell, G. G. Briggs and K. Wright. 1995. The influences of molecular mechanisms of action on herbicide design. In : N. N. Ragsdale, P. C. Kearney, J. R. Plimmer (Eds). Processing of the Eighth of the English International Congress of Pesticide Chemistry, America Chemical Society, Washington, DC, pp. 292-303.
  28. Ploux, O., and A. Marquet. 1992. The 8-amino-7-oxopelargonate synthase from Bacillus sphaericus. Purification and preliminary characterization of the cloned enzyme overproduced in Escherichia coli. Biochem. J. 283:327-331. https://doi.org/10.1042/bj2830327
  29. Prisbylla, M. P., B. C. Onisko, J. M. Shribbs, D. O. Adams, Y. Liu, M. K. Ellis, T. R. Hawkes and L. C. Mutter. 1993. The novel mechanism of action of the herbicidal triketones. Proc. Brighton Crop Prot. Conf.-Weeds 2:731-738.
  30. Putnam, A. R. 1988. Allelochemicals from plant as herbicides. Weed Tech. 2:510-518. https://doi.org/10.1017/S0890037X00032371
  31. Quarles, W. 1999. Non-toxic weed control in the lawn and garden. Common Sense Pest Cont. Quarter Summer. pp. 4-14.
  32. Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press, Orlando, Florida, pp. 266-291.
  33. Riches, C. R., J. C. Casely, B. E. Valverde and V. M. Down. 1996. Resistance of Echinochloa colona to ACCase inhibiting herbicides. Proc. International Symposium on Weed and Crop Resistance to Herbicides. EWRS, Cordoba, Spain. pp. 14-16.
  34. Satoh, A., T. Murakami, H. Takebe, S. Imai and H. Seto. 1993. Industrial development of bialaphos, a herbicide from metabolites of Streptomyces hygropicus SF 1293. Actinomyceteologica 7:128-132. https://doi.org/10.3209/saj.7_128
  35. Schultz, A., O. Art, P. Beyer and H. Kleing. 1993. SC-0051, a 2-benzoylcyclo hexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyrubate dioxygenase. FEBS Lett. 316:162-16637.
  36. Tachibana, T., T. Watanabe, Y. Sekizawa and T. Takematsu. 1986. Inhibition of glutamine synthetase and quantative changes of free amino acids in shoots of bialaphos treated Japanese barnyard millet. Journal of Pesticide Sci. 11:27-31. https://doi.org/10.1584/jpestics.11.27
  37. Webster, S. P., D. Alexeev, D. J. Campopiano, R. M. Watt, M. Alexeeva, L. Sawyer and R. L. Baxter. 2000. Mechanism of 8-amino-7-oxononanoate synthase : spectroscopic, kinetic, and crystallographic studies. Biochemistry 39:516-528. https://doi.org/10.1021/bi991620j
  38. Wolfang, L., F. Bornke, A. Reindl, T. Ehrhardt, M. Stitt and U. Sonnewald. 2004. Target-based discovery of novel herbicides. Curr. Opin. Plant Biol. 7(2):219-225. https://doi.org/10.1016/j.pbi.2004.01.001

Cited by

  1. The Identification of Binding Mode for Arabidopsis thaliana 7-Keto-8-aminopelargonic Acid Synthase (AtKAPAS) Inhibitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1597