References
- Ahn, B. S., "Extending Malakooti's model for ranking multicriteria alternatives with preference strength and partial information," IEEE Trans. Syst., Man, Cybern., Part A 33 (2003), 281-287. https://doi.org/10.1109/TSMCA.2003.817049
- Anandalingam, G. and C. E. Olsson, "A multi-stage multi-attribute decision model for project selection," Eur. J. Opl. Res. 43 (1989), 271-283. https://doi.org/10.1016/0377-2217(89)90226-9
- Arnold, V. I., I. Bardhan, W. W. Cooper, and A. Gallegos, "Primal and dual optimality in computer codes using two-stage solution procedures in DEA," Operations Research: Methods, Models and Applications, Aranson, J. and S. Zionts, (Eds.), Quorum Books: Westport, CT, (1998), 57-96.
- Athanassopoulos, A. D. and V. V. Podinovski, "Dominance and potential optimality in multiple criteria decision analysis with imprecise information," J. Opl. Res. Soc. 48 (1997), 142-150. https://doi.org/10.1057/palgrave.jors.2600345
- Barron, F. H. and B. E. Barret, "Decision quality using ranked attribute weights," Mngt. Sci. 42 (1996), 1515-1523. https://doi.org/10.1287/mnsc.42.11.1515
- Belton, V. and S. P. Vickers, "Demystifying DEA-A visual interactive approach based on multiple criteria analysis," J. Opl. Res. Soc. 44 (1993), 883-896.
- Bouyssou, D., "Using DEA as a tool for MCDM: Some remarks," J. Opl. Res. Soc. 50 (1999), 974-978. https://doi.org/10.1057/palgrave.jors.2600800
- Cook, W. D., J. Doyle, R. Green, and M. Kress, "Multiple criteria modeling and ordinal data: Evaluation in terms of subsets of criteria," Eur. J. Opl. Res. 98 (1997), 602-609. https://doi.org/10.1016/S0377-2217(96)00069-0
- Cook, W. D. and M. Kress, "A multiple criteria decision model with ordinal preference data," Eur. J. Opl. Res. 54 (1991), 191-198. https://doi.org/10.1016/0377-2217(91)90297-9
- Cooper, W. W., L. M. Seiford, and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, and References and DEA-Solver Software, Kluwer-Academic Publishers: Boston, 2000.
- Craig, C. S. and S. P. Douglas, International Marketing Research, John Wiley and Sons Ltd: New York, 2005.
- Daniels, J. D., L. H. Radebaugh, and D. P. Sullivan, International Business: Environments and Operations, Prentice Hall: Upper Saddle River, New Jersey, 2008.
- Dyer, J. S. and R. K. Sarin, "Measurable multiattribute value functions," Opns. Res. 27 (1979), 810-822. https://doi.org/10.1287/opre.27.4.810
- Fishburn, P. C., "Analysis of decisions with incomplete knowledge of probabilities," Opns. Res. 13 (1965), 217-237. https://doi.org/10.1287/opre.13.2.217
- Hazen, G. B., "Partial information, dominance, and potential optimality in multiattribute utility theory," Opns. Res. 34 (1986), 296-310. https://doi.org/10.1287/opre.34.2.296
- Jimenez, A., S. Rios-Insua, and A. Mateos, "A generic multi-attribute analysis system," Comp. and Opns. Res. 33 (2006), 1081-1101. https://doi.org/10.1016/j.cor.2004.09.003
- Keeney, R. L. and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Wiley: New York, 1976.
- Kirkwood, C. W. and J. L. Corner, "The effectiveness of partial information about attribute weights for ranking alternatives in multiattribute decision making," Org. Behavior and Human Dec. Pro. 54 (1993), 456-476. https://doi.org/10.1006/obhd.1993.1019
- Kirkwood, C. W. and R. K. Sarin, "Ranking with partial information: A method and an application," Opns. Res. 33 (1985), 38-48. https://doi.org/10.1287/opre.33.1.38
- Kmietowicz, Z. W. and A. D. Pearman, "Decision theory, linear partial information and statistical dominance," Omega 12 (1984), 391-399. https://doi.org/10.1016/0305-0483(84)90075-6
- Krantz, D. H., R. D. Luce, P. Suppes, and A. Tversky, Foundations of Measurement, Academic Press: New York, 1971.
- Lee, K. S., K. S. Park, Y. S. Eum, and K. Park, "Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information," Eur. J. Opl. Res. 134 (2001), 557-563. https://doi.org/10.1016/S0377-2217(00)00277-0
- Malakooti, B., "Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preferences," IEEE Trans. Syst., Man, Cybern. 30 (2000), 355-368. https://doi.org/10.1109/3468.844359
- Mateos, A., S. Rios-Insua, and A. Jimenez, "Dominance, potential optimality and alternative ranking in imprecise multi‐attribute decision making," J. Opl. Res. Soc. 58 (2007), 326-336. https://doi.org/10.1057/palgrave.jors.2602158
- Moskowitz, H., P. V. Preckel, and A. Yang, "Multiple‐criteria robust interactive decision analysis (MCRID) for optimizing public policies," Eur. J. Opl. Res. 56 (1992), 219-236. https://doi.org/10.1016/0377-2217(92)90224-W
- Park, K. S., "Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete," IEEE Trans. Syst., Man, Cybern., Part A 34 (2004), 601-614. https://doi.org/10.1109/TSMCA.2004.832828
- Park, K. S. and S. H. Kim, "Tools for interactive multiattribute decisionmaking with incompletely identified information," Eur. J. Opl. Res. 98 (1997), 111-123. https://doi.org/10.1016/0377-2217(95)00121-2
- Pearman, A. D., "Establishing dominance in multiattribute decision making using an ordered metric method," J. Opl. Res. Soc. 44 (1993), 461-469. https://doi.org/10.1057/jors.1993.82
- Sage, A. P. and C. C. White III, "ARIADNE: A knowledge-based interactive system for planning and decision support," IEEE Trans. Syst., Man, Cybern. 14 (1984), 35-47.
- Salo, A. A. and R. P. Hamalainen, Preference assessment by imprecise ratio statements, Opns. Res. 40 (1992), 1053-1061. https://doi.org/10.1287/opre.40.6.1053
- Stewart, T. J., "Relationships between data envelopment analysis and multicriteria decision analysis," J. Opl. Res. Soc. 47 (1996), 654-665. https://doi.org/10.1057/jors.1996.77
- von Winterfeldt, D. and W. Edwards, Decision Analysis and Behavioral Research, Cambridge University Press: New York, 1986.
- Weber, M., "Decision making with incomplete information," Eur. J. Opl. Res. 28 (1987), 44-57. https://doi.org/10.1016/0377-2217(87)90168-8