Characteristics of Biodegradable Blends of PBAST and Chemically Modified Thermoplastic Starch

생분해성 PBAST와 변형 열가소성 전분 블렌드의 특성

  • Received : 2011.05.06
  • Accepted : 2011.06.24
  • Published : 2011.11.25

Abstract

This article aims to enhance the biodegradability and environment-friendliness of petroleum based biodegradable poly(butylene adipate-co-succinate-co-terephthalate)(PBAST) by blending chemically modified thermoplastic starch(CMPS). CMPS is a kind of bio-based biodegradable resin which is manufactured by reacting starch with maleic anhydride(MA) in the presence of a plasticizer and a free radical initiator. The characteristic properties of PBAST/CMPS blends were investigated by observing their morphology, thermal, mechanical properties, and biodegradability. The good interfacial adhesion between the phases examined by SEM revealed that PBAST/CMPS blends were compatible blends. The tensile strength and elongation decreased with increasing CMPS content, while modulus increased. The biodegradability of the blends was much higher than that of pristine PBAST and increased with increasing CMPS contents.

본 연구는 석유유래 생분해성 고분자인 poly(butylene adipate-co-succinate-co-terephthalate)(PBAST)의 생분해도와 친환경성을 높이기 위하여 변형 열가소성 전분(CMPS, chemically modified thermoplastic starch)을 첨가하였다. CMPS는 천연고분자인 전분을 가소제, maleic anhydride(MA) 및 반응개시제로 반응시켜 제조한 일종의 식물유래 생분해성 수지이다. PBAST/CMPS 블렌드의 파단면 사진으로부터 PBAST와 CMPS 상이 분리된 비혼화성 (immiscible blend) 블렌드이지만 상 사이의 계면 형상이 좋은 상용성 블렌드임을 알 수 있었다. 인장강도와 연신율은 CMPS 함량이 증가함에 따라 감소하였지만 탄성률은 증가하였다. 블렌드의 생분해도는 순수 PBAST에 비해 매우 높았고 CMPS의 함량이 증가함에 따라 증가하였다.

Keywords

References

  1. R. Gross and B. Kalra, Science, 297, 803 (2002). https://doi.org/10.1126/science.297.5582.803
  2. W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polymer (Korea), 24, 431 (2000).
  3. S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Shim, J. D. Nam, H. Kye, and Y. Lee, Polymer(Korea), 28, 519 (2004)
  4. J. H. Cho, Y. Chang, I. Noh, C. Kim, S. H. Kim, and Y. H. Kim, Polymer(Korea), 21, 879 (1997).
  5. S. W. Chun, S. H. Kim, Y. H. Kim, and H. J. Kang, Polymer (Korea), 24, 333 (2000).
  6. J. S. Lee, D. J. Choo, S. H. Kim, and Y. H. Kim, Polymer (Korea), 22, 880 (1998).
  7. J. Kim, H. J. Kang, and K. H. Seo, J. Appl. Polym. Sci., 81, 637 (2001). https://doi.org/10.1002/app.1479
  8. U. Witt, R-J. Muller, and W.-D. Decker, J. Environ. Polym. Degrad., 5, 81 (1997). https://doi.org/10.1007/BF02763591
  9. K. Kuwabara, Z. Gan, T. Nakamura, H. Abe, and Y. Doi, Biomacromolecules, 3, 390 (2002). https://doi.org/10.1021/bm0156476
  10. E. Cranston, J. Kawada, S. Raymond, F. G. Morin, and R. H. Marchessault, Biomacromolecules, 4, 995 (2003). https://doi.org/10.1021/bm034089n
  11. E. S. Yoo and S. S. Im, J. Polym. Sci. Part B: Polym. Phys., 37, 1357 (1999).€
  12. S. S. Ray, M. Bousmina, and K. Okamoto, Macromol. Mater. Eng., 290, 759 (2005). https://doi.org/10.1002/mame.200500203
  13. Y. Sato, K. Inohara, S. Takishima, H. Masuoka, M. Imaizumi, H. Masuoka, M. Imaizumi, H. Yamamoto, and M. Takasugi, Polym. Eng. Sci., 40, 2602 (2000). https://doi.org/10.1002/pen.11390
  14. B. Y. Shin, B. H. Cho, K. H. Hong, and B. S. Kim, Polymer (Korea), 33, 588 (2009).
  15. R. Narayan, "Rationale, Drivers, and Technology Examples," in Biobased & Biodegradable Polymer Materials, ACS Sym. Ser 939, K. C. Khemmani and C. Scholz, Editors, Washington DC, Chap.5 (2006).
  16. R. Narayan, S. Blakrishnan, Y. Nabar, B. Y. Shin, P. Dubois, and J. M. Raquez, U.S. Patent 7,153,354 (2006).
  17. B. Y. Shin. R. Narayan, S. I. Lee, and T. J. Lee, Polym. Eng. Sci., 48, 2126 (2008). https://doi.org/10.1002/pen.21123
  18. J. M. Raquez, Y. Nabar, M. Srinivasan, B. Y. Shin, R. Narayan, S. Blakrishnan, and P. Dubois, Carbohyd. Polym., 74, 159 (2008). https://doi.org/10.1016/j.carbpol.2008.01.027
  19. ISO 14855 "Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Plastics under Controlled Composting Conditions-Method by Analysis of Released Carbon Dioxide" (1997).
  20. J. W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (2000). https://doi.org/10.1002/pen.11384
  21. J-M. Raquez, Y. Nabar, R. Narayan, and P. Dubois, Polym. Eng. Sci., 48, 1747 (2008). https://doi.org/10.1002/pen.21136
  22. W. T. Winter and A. Sarko, Biopolymers, 13, 1447 (1974). https://doi.org/10.1002/bip.1974.360130715
  23. M. Carr, J. Appl. Polym. Sci., 42, 45 (1991). https://doi.org/10.1002/app.1991.070420106
  24. K. Cho and S. Choe, Polymer(Korea), 19, 615 (1995).
  25. K. Frost, D. Kaminski, G. Kirwan, E. Lascaris, and R. Shanks, Carbohyd. Polym., 78, 543 (2009). https://doi.org/10.1016/j.carbpol.2009.05.018
  26. B. Y. Shin, S. H. Jang, and B. S. Kim, Polym. Eng. Sci., 51, 826 (2011). https://doi.org/10.1002/pen.21896
  27. K. Y. Cho, K. S. Lee, and J.-K. Park, Polymer(Korea), 33, 248 (2009).
  28. D. R. Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978.
  29. B. Sedlacek and W. Gruyter, Morphology of Polymers, Verlag Walter de Gruyter & Co., Berlin, 1986.
  30. L. A. Utracki, Polymer Alloys and Blends, Hanser, Munich, 1989.
  31. S. Aslan, L. Calandrelli, P. Laurirenzo, M. Malinconico, and C. Migliaresi, J. Mater. Sci.: Mater. Med., 35, 1615 (2000). https://doi.org/10.1023/A:1004787326273
  32. Y. Lee, J. Kim, J. Nam, C. Park, and S. Jang, Polymer(Korea), 24, 366 (2000).
  33. Y. Moon and C. K. Kim, Polymer(Korea), 23, 690 (1999).
  34. M. Bertoldi, P. Sequi, B. Lemmes, and T. Papi, The Science of Composting, Blakie Academic & Professional Press, New York, 1996.
  35. W. Y. Jang, B. Y. Shin, T. J. Lee, and R. Narayan, J. Ind. Eng. Chem., 13, 457 (2007).
  36. J. B. Snook, M. S. Thesis, Michigan State University (1994).
  37. H. Pranamuda, Y. Tokiwa, and H. Tanaka, J. Environ. Polym. Degrad., 4, 1 (1996). https://doi.org/10.1007/BF02083877